Skip to main content
Log in

Dietary cyanidin 3-O-β-d-glucoside increases ex vivo oxidation resistance of serum in rats

  • Published:
Lipids

Abstract

The effect of dietary cyanidin 3-O-β-d-glucoside (C3G), a typical anthocyanin pigment, on the generation of thiobarbituric acid reactive substances (TBARS) during serum formation ex vivo and susceptibility of serum to further lipid peroxidation was studied in rats. Rats were fed a diet containing C3G (2 g/kg) for 14 d. Feeding C3G resulted in a significant decrease in generation of TBARS during serum formation. The serum from the C3G-fed group showed a significantly lower susceptibility to further lipid peroxidation provoked by 2,2′-azobis (2-amidinopropane)hydrochloride or Cu2+ than that of the control group. No significant differences were observed in serum phospholipid, triglyceride, esterified cholesterol, and free fatty acid concentrations between the control and the C3G-fed groups. Concentrations of endogenous antioxidants remaining in the serum after blood coagulation were not affected by the C3G feeding. These results demonstrate that feeding C3G increases the ex vivo oxidation resistance of the serum without affecting serum endogeneous antioxidant levels, and reduces the TBARS generated during serum formation without changing the concentrations of serum lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis(2-amidinopropane)hydrochloride

C3G:

cyanidin 3-O-β-d-glucoside

D3G:

delphinidin 3-O-β-d-glucoside

GSH:

reduced glutathione

LDL:

low density lipoprotein

TBARS:

thiobarbituric acid reactive substance

References

  1. Cutler, R.G. (1984) Antioxidants, Aging, and Longevity, in Free Radicals in Biology (Pryor, W.A., ed.) Vol. 6, pp. 371–423, Academic Press, Orlando.

    Google Scholar 

  2. Pryor, W.A. (1986) Cancer and Free Radicals, in Antimutagenesis and Anticarcinogenesis Mechanisms (Shankel, D.M., Hartman, P.E., Kada, T., and Hollaender, A., eds.) pp. 45–59, Plenum Press, New York.

    Google Scholar 

  3. Harman, D. (1992) Free Radical Theory of Aging, Mutat. Res. 275, 257–266.

    PubMed  CAS  Google Scholar 

  4. Stadtman, E.R. (1992) Protein Oxidation and Aging, Science 257, 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  5. Packer, L. (1995) Oxidative Stress, Antioxidants, Aging and Disease, in Oxidative Stress and Aging (Cutler, R.G., Packer, L., Bertram, J., and Mori, A., eds.) pp. 1–14, Birkhäuser Verlag, Basel/Switzerland.

    Google Scholar 

  6. Ames, B.N., Shigenaga, M.K., and Hagen, T.M. (1993) Oxidants, Antioxidants, and the Degenerative Diseases of Aging, Proc. Natl. Acad. Sci. U.S.A. 90, 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  7. Ames, B.N., Caheart, R., Schwiers, E., and Hochstein, P. (1981) Uric Acid Provides an Antioxidant Defense in Humans Against Oxidant-and Radical-Caused Aging and Cancer: A Hypothesis, Proc. Natl. Acad. Sci. U.S.A. 78, 6858–6862.

    Article  PubMed  CAS  Google Scholar 

  8. Simic, M.G. (1988) Mechanisms of Inhibition of Free-Radical Processes in Mutagenesis and Carcinogenesis, Mutat. Res. 202, 377–386.

    PubMed  CAS  Google Scholar 

  9. Meydani, M., Martin, A., Ribaya-Mercado, J.D., Gong, J., Blumberg, J.B., and Russell, R.M. (1994) β-Carotene Supplementation Increases Antioxidant Capacity of Plasma in Older Women, J. Nutr. 124, 2397–2403.

    PubMed  CAS  Google Scholar 

  10. Huang, M.T., and Ferraro, T. (1992) Phenolic Compounds in Food and Cancer Prevention, in Phenolic Compounds in Food and Their Effects on Health II (Huang, M.T., Ho, C.T., and Lee, C.Y., eds.) pp. 8–34, ACS, Washington, D.C.

    Google Scholar 

  11. Osawa, T., Yoshida, A., Kawakishi, S., Yamashita, K., and Ochi, H. (1995) Protective Role of Dietary Antioxidants in Oxidative Stress, in Oxidative Stress and Aging (Cutler, R.G., Packer, L., Bertram, J., and Mori, A., eds.) pp. 367–377, Birkhäuser Verlag, Basel/Switzerland.

    Google Scholar 

  12. Tsuda, T., Ohshima, K., Kawakishi, S., and Osawa, T. (1997) Inhibition of Lipid Peroxidation and Radical Scavenging Effect of Anthocyamin Pigments Isolated from the Seeds of Phaseolus vulgaris L., in Food Factors for Cancer Prevention (Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., and Yoshikawa, T., eds.), pp. 318–322, Springer-Verlag, Tokyo.

    Google Scholar 

  13. Tsuda, T., Makino, Y., Kato, H., Osawa, T., and Kawakishi, S. (1993) Screening for Antioxidative Activity of Edible Pulses, Biosci. Biotech. Biochem. 57, 1606–1608.

    Article  CAS  Google Scholar 

  14. Tsuda, T., Ohshima, K., Kawakishi, S., and Osawa, T. (1994) Antioxidative Pigments Isolated from the Seeds of Phaseolus vulgaris L., j. Agric. Food Chem. 42, 248–251.

    Article  CAS  Google Scholar 

  15. Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S.W., Kawakishi, S., and Osawa, T. (1994) Antioxidative Activity of the Anthocyanin Pigments Cyanidin 3-O-β-d-Glucoside and Cyanidin, J. Agric. Food Chem. 42, 2407–2410.

    Article  CAS  Google Scholar 

  16. Tsuda, T., Shiga, K., Ohshima, K., Kawakishi, S., and Osawa, T. (1996) Inhibition of Lipid Peroxidation and the Active Oxygen Radical Scavenging Effect of Anthocyanin Pigments Isolated from Phaseolus vulguris L., Biochem. Pharmacol. 52, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  17. Renaud, S., and Lorgeril, M. (1992) Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease, Lancet 339, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  18. Frankel, E.N., Kanner, J., German, J.B., Parks, E., and Kinsella, J.E. (1993) Inhibition of Oxidation of Human Low Density Lipoprotein by Phenolic Substances in Red Wine, Lancet 341, 454–457.

    Article  PubMed  CAS  Google Scholar 

  19. Kinsella, J.E., Frankel, E.N., German, B., and Kanner, J. (1993) Possible Mechanisms for the Protective Role of Antioxidants in Wine and Plant Foods, Food Technol. 47, 85–89.

    CAS  Google Scholar 

  20. Kondo, K., Matsumoto, A., Kurata, H., Tanahashi, H., Koga, H., Amachi, T., and Itakura, H. (1994) Inhibition of Oxidation of Low Density Lipoprotein with Red Wine, Lancet 344, 1152.

    Article  PubMed  CAS  Google Scholar 

  21. Bakker, J., and Timberlake, C.F. (1985) The Distribution of Anthocyanins in Grape Skin Extracts of Port Wine Cultivars as Determined by High-Performance Liquid Chromatography, J. Sci. Food Agric. 36, 1315–1324.

    Article  CAS  Google Scholar 

  22. Bakker, J., and Timberlake, C.F. (1985) The Distribution and Content of Anthocyanins in Young Port Wines as Determined by High-Performance Liquid Chromatography, J. Sci. Food Agric. 36, 1325–1333.

    Article  CAS  Google Scholar 

  23. Harborne, J.B., and Grayer, R.J. (1988) The Anthocyanins, in The Flavonoids (Harborne, J.B., ed.) pp. 1–20, Chapman and Hall, London.

    Google Scholar 

  24. Brouillard, R. (1988) Flavonoids and Flower Color, in The Flavonoids (Harborne, J.B., ed.) pp. 525–538, Chapman and Hall, London.

    Google Scholar 

  25. Tsuda, T., Ohshima, K., Kawakishi, S., and Osawa, T. (1996) Oxidation Products of Cyanidin 3-O-β-d-Glucoside with a Free Radical Initiator, Lipids 31, 1259–1263.

    PubMed  CAS  Google Scholar 

  26. Reeves, P.G., Nielsen, F.H., and Fahey, Jr., G.C. (1993) AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  27. Frei, B., Stocker, R., and Ames, B.N. (1988) Antioxidant Defenses and Lipid Peroxidation in Human Blood Plasma, Proc. Natl. Acad. Sci. U.S.A. 85, 9748–9752.

    Article  PubMed  CAS  Google Scholar 

  28. Gugliucci, A. (1996) Antioxidant Effects of Ilex paraguariensis: Induction of Decreased Oxidability of Human LDL in vivo, Biochem. Biophys. Res. Commun. 224, 338–344.

    Article  PubMed  CAS  Google Scholar 

  29. Naito, C., and Yamanaka, T. (1978) Atherosclerosis and Lipid Hydroperoxides, Nippon Ronenigakukai Zasshi 15, 187–191.

    CAS  Google Scholar 

  30. Ohkawa, H., Ohishi, N., and Yagi, K. (1979) Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction, Anal. Biochem. 95, 351–358.

    Article  PubMed  CAS  Google Scholar 

  31. Ueda, T., and Igarashi, O. (1987) New Solvent System for Extraction of Tocopherols from Biological Specimens for HPLC Determination and the Evaluation of 2,2,5,7,8-Pentamethyl-6-Chromanol as an Internal Standard, J. Micronutr. Anal. 3, 185–198.

    CAS  Google Scholar 

  32. Yamamoto, Y., Michael, H.B., Jeffrey, C.B., and Ames, B.N. (1987) Detection and Characterization of Lipid Hydroperoxides at Picomole Levels by High-Performance Liquid Chromatography, Anal. Biochem. 160, 7–13.

    Article  PubMed  CAS  Google Scholar 

  33. Kabasakalian, P., Kalliney, S., and Westcott, A. (1973) Determination of Uric Acid in Serum, with Use of Uricase and a Tribromophenol-Aminoantipyrine Chromogen, Clin. Chem. 19, 522–524.

    PubMed  CAS  Google Scholar 

  34. Takayama, M., Itoh, S., Nagasaki, T., and Tanimizu, I. (1977) A New Enzymatic Method for Determination of Serum Choline-Containing Phospholipids, Clinica. Chimica. Acta 79, 93–98.

    Article  CAS  Google Scholar 

  35. Spayd, R.W., Bruschi, B., Burdick, B.A., Dappen, G.M., Eikenberry, J.N., Esders, T.W., Figueras, J., Goodhue, C.T., LaRossa, D.D., Nelson, R.W., Rand, R.N., and Wu, T.W. (1978) Multilayer Film Elements for Clinical Analysis: Applications to Representative Chemical Determinations, Clin. Chem. 24, 1343–1350.

    PubMed  CAS  Google Scholar 

  36. Allain, C.C., Poon, L.S., Chan, C.S.G., Richmond, W., and Fu, P.C. (1974) Enzymatic Determination of Total Cholesterol, Clin. Chem. 20, 470–475.

    PubMed  CAS  Google Scholar 

  37. Duncombe, W.G. (1964) The Colorimetric Micro-Determination of Non-Esterified Fatty Acids in Plasma, Clinica. Chimica. Acta 9, 122–125.

    Article  CAS  Google Scholar 

  38. Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B., and Kromhout, D. (1993) Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: the Zutphen Elderly Study, Lancet 342, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  39. Castelluccio, C., Bolwell, G.P., Gerrish, C., and Rice-Evans, C. (1996) Differential Distribution of Ferulic Acid to the Major Plasma Constituents in Relation to Its Potential as an Antioxidant, Biochem. J. 316, 691–694.

    PubMed  CAS  Google Scholar 

  40. Osawa, T. (1997) Biochemical and Physiological Importance of Plant Polyphenols, in Food Factors for Cancer Prevention (Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., and Yosnikawa, T., eds.) pp. 39–46, Springer-Verlag, Tokyo.

    Google Scholar 

  41. Fuhrman, B., Lavy, A., and Aviram, M. (1995) Consumption of Red Wine with Meals Reduces the Susceptibility of Human Plasma and Low Density Lipoprotein to Lipid Peroxidation, Am. J. Clin. Nutr. 61, 549–554.

    PubMed  CAS  Google Scholar 

  42. Nardini, M., Natella, F., Gentili, V., Felice, M.D., and Scaccini, C. (1997) Effect of Caffeic Acid Dietary Supplementation on the Antioxidant Defense System in Rat: An in vivo Study, Arch. Biochem. Biophys. 342, 157–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Tsuda.

About this article

Cite this article

Tsuda, T., Horio, F. & Osawa, T. Dietary cyanidin 3-O-β-d-glucoside increases ex vivo oxidation resistance of serum in rats. Lipids 33, 583–588 (1998). https://doi.org/10.1007/s11745-998-0243-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0243-5

Keywords

Navigation