Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status

Abstract

Potential antiproliferative effects of tocotrienols, the major vitamin E component in palm oil, were investigated on the growth of both estrogen-responsive (ER+) MCF7 human breast cancer cells and estrogen-unresponsive (ER-) MDA-MD-231 human breast cancer cells, and effects were compared with those of α-tocopherol (αT). The tocotrienol-rich fraction (TRF) of palm oil inhibited growth of MCF7 cells in both the presence and absence of estradiol with a nonlinear dose-response but such that complete suppression of growth was achieved at 8 μg/mL. MDA-MB-231 cells were also inhibited by TRF but with a linear dose-response such that 20 μg/mL TRF was needed for complete growth suppression. Separation of the TRF into individual tocotrienols revealed that all fractions could inhibit growth of both ER+ and ER- cells and of ER+ cells in both the presence and absence of estradiol. However, the γ- and δ-fractions were the most inhibitory. Complete inhibition of MCF7 cell growth was achieved at 6 μg/mL of γ-tocotrienol/δ-tocotrienol (γT3/δT3) in the absence of estradiol and 10μm/mL of δT3 in the presence of estradiol, whereas complete suppression of MDA-MB-231 cell growth was not achieved even at concentrations of 10μg/mL of δT3. By contrast to these inhibitory effects of tocotrienols, αT had no inhibitory effect on MCF7 cell growth in either the presence or the absence of estradiol, nor on MDA-MB-231 cell growth. These results confirm studies using other sublines of human breast cancer cells and demonstrate that tocotrienols can exert direct inhibitory effects on the growth of breast cancer cells. In searching for the mechanism of inhibition, studies of the effects of TRF on estrogen-regulated pS2 gene expression in MCF7 cells showed that tocotrienols do not act via an estrogen receptor-mediated pathway and must therefore act differently from estrogen antagonists. Furthermore, tocotrienols did not increase levels of growth-inhibitory insulin-like growth factor binding proteins (IGFBP) in MCF7 cells, implying also a different mechanism from that proposed for retinoic acid inhibition of estrogen-responsive breast cancer cell growth. Inhibition of the growth of breast cancer cells by tocotrienols could have important clinical implications not only because tocotrienols are able to inhibit the growth of both ER+ and ER- phenotypes but also because ER+ cells could be growth-inhibited in the presence as well as in the absence of estradiol. Future clinical applications of TRF could come from potential growth suppression of ER+ breast cancer cells otherwise resistant to growth inhibition by antiestrogens and retinoic acid.

This is a preview of subscription content, log in to check access.

Abbreviations

DCFCS:

dextran-charcoal treated fetal calf serum

ER+:

estrogen receptor positive (containing estrogen receptors)

ER−:

estrogen receptor negative (lacking estrogen receptors)

FCS:

fetal calf serum

IGF:

insulin-like growth factor

IGFBP:

insulin-like growth factor binding protein

PBS:

phosphate-buffered saline

SDS:

sodium dodecyl sulfate

αT:

α-tocopherol

αT3 :

α-tocotrienol

γT3 :

γ-tocotrienol

δT3 :

δ-tocotrienol

TRF:

tocotrienol-rich fraction

References

  1. 1.

    Sebrell, W.H., and Harris, R.S. (1972) The Vitamins, 2nd edn., Vol. 5, pp. 172–173, Academic Press, New York.

    Google Scholar 

  2. 2.

    Tappel, A.L. (1972) Vitamin E and Free Radical Peroxidation of Lipids, Ann. N.Y. Acad. Sci. 203, 12.

    PubMed  CAS  Google Scholar 

  3. 3.

    Burton, G.W., and Ingold, K.U. (1989) Vitamin E as in vitro and in vivo Antioxidant, Ann. N.Y. Acad. Sci. 570, 7–22.

    PubMed  CAS  Google Scholar 

  4. 4.

    Goh, S.H., Hew, N.F., Ong, A.S.H., Choo, Y.M., and Brumby, S. (1990) Tocotrienols from Palm Oil: Electron Spin Resonance Spectra of Tocotrienoxyl Radicals, J. Am. Oil Chem. Soc. 67, 250–254.

    CAS  Google Scholar 

  5. 5.

    Serbinova, E., Kagan, V., Han, D., and Packer, L. (1991) Free Radical Recycling and Intermembrane Mobility in the Antioxidation Properties of Alpha-Tocopherol and Alpha-Tocotrienol, Free Radicals Biol. Med. 10, 263–275.

    CAS  Article  Google Scholar 

  6. 6.

    Ong, A.S.H. (1993) Natural Sources of Tocotrienols in Vitamin E in Health and Disease (Packer, L., and Fuchs, J., eds.) Marcel Dekker, New York, pp. 3–8.

    Google Scholar 

  7. 7.

    Gould, M.N., Haag, J.D., Kennan, W.S., Tanner, M.A., and Elson, C.E. (1991) A Comparison of Tocopherol and Tocotrienol for the Chemoprevention of Chemically Induced Rat Mammary Tumors, Am. J. Clin Nutr. 53, 1068s-1070s.

    PubMed  CAS  Google Scholar 

  8. 8.

    Tan, B. (1992) Antitumor Effects of Palm Carotenes and Tocotrienols in HRS/J Hairless Female Mice, Nutr. Res. 12, S163–173.

    Article  Google Scholar 

  9. 9.

    Sylvester, P.W., Russell, M., Ip, M.M., and Ip, C. (1986) Comparative Effects of Different Animal and Vegetable Fats Before and During Carcinogen Administration on Mammary Tumourigenesis, Sexual Maturation and Endocrine Function in Rats, Cancer Res. 46, 757–762.

    PubMed  CAS  Google Scholar 

  10. 10.

    Sundram, K., Khor, H.T., Ong, A.S.H., and Pathmanathan, R. (1989) Effect of Dietary Palm Oils on Mammary Carcinogenesis in Female Rats Induced by 7, 12 Dimethylbenz(α)anthracene, Cancer Res. 49, 1447–1451.

    PubMed  CAS  Google Scholar 

  11. 11.

    Kritchevsky, D., Weber, M.M., and Klurfeld, D.M. (1992) Influence of Different Fats (Soyabean Oil, Palm Olein or Hydrogenated Oil) on Chemically-Induced Mammary Tumors in Rats, Nutr. Res. 12, S175–179.

    Article  Google Scholar 

  12. 12.

    Nesaretnam, K., Khor, H.T., Ganeson, J., Chong, Y.H., Sundram, K., and Gapor, A. (1992) The Effect of Vitamin E Tocotrienols from Palm Oil on Chemically Induced Mammary Carcinogenesis in Female Rats, Nutr. Res. 12, 879–892.

    CAS  Article  Google Scholar 

  13. 13.

    Nesaretnam, K., Guthrie, N., Chambers, A.F., and Carroll, K.K. (1995) Effect of Tocotrienols on the Growth of a Human Breast Cancer Cell Line in Culture, Lipids 30, 1139–1143.

    PubMed  CAS  Google Scholar 

  14. 14.

    Beck, J.S. (ed.) (1989) Oestrogen and the Human Breast, Proc. Roy. Soc. Edin. 95B, 1–307.

  15. 15.

    Stewart, H.J., Anderson, T.J., and Forrest, A.P.M. (eds.) (1991) Breast Cancer: New Approaches, Brit Med. Bull. 47, 251–518.

  16. 16.

    Darbre, P.D., and Daly, R.J. (1989) Effects of Oestrogen on Human Breast Cancer Cells in Culture, Proc. Roy. Soc. Edin. 95B, 119–132.

    Google Scholar 

  17. 17.

    Lippman, M.E., and Dickson, R.B. (1990) Regulatory Mechanisms in Breast Cancer: Advances in Cellular and Molecular Biology of Breast Cancer, Kluwer Academic Publishers, Boston, pp. 1–452.

    Google Scholar 

  18. 18.

    Engel, L.W., Young, N.A., Tralka, T.S., Lippman, M.E., O'Brien, S.J., and Joyce, M.J. (1978) Establishment and Characterisation of Three New Continuous Cell Lines Derived from Human Breast Carcinomas, Cancer Res. 38, 3352–3364.

    PubMed  CAS  Google Scholar 

  19. 19.

    Osborne, C.K., Hobbs, K., and Trent, J.M. (1987) Biological Differences Among MCF-7 Human Breast Cancer Cell Lines from Different Laboratories, Breast Cancer Res. Treat. 9, 111–121.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Yee, D. (1992) Insulin-Like Growth Factors in Breast Cancer, Breast Cancer Res. Treat. 22, 1–106.

    Article  Google Scholar 

  21. 21.

    Kelley, K.M., Oh, Y., Gargosky, S.E., Gucev, Z., Matsumoto, T., Hwa, V., Ng, L., Simpson, D.M., and Rosenfeld, R.G. (1996) Insulin-Like Growth Factor Binding Proteins (IGFBPs) and Their Regulatory Dynamics, Int. J. Biochem. Cell Biol. 28, 619–637.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Yee, D., Cullen, K.J., Paik, S., Perdue, J.F., Hampton, B., Schwartz, A., Lippman, M.E., and Rosen, N. (1988) Insulin-Like Growth Factor II mRNA Expression in Human Breast Cancer, Cancer Res. 48, 6691–6696.

    PubMed  CAS  Google Scholar 

  23. 23.

    Stewart, A.J., Johnson, M.D., May, F.E.B., and Westley, B.R. (1990) Role of Insulin-Like Growth Factors and the Type I Insulin-Like Growth Factor Receptor in the Estrogen-Stimulated Proliferation of Human Breast Cancer Cells, J. Biol. Chem. 265, 21172–21178.

    PubMed  CAS  Google Scholar 

  24. 24.

    Pratt, S.E., and Pollock, M.N. (1993) Estrogen and Antioestrogen Modulation of MCF-7 Human Breast Cancer Cell Proliferation Is Associated with Specific Alterations in Accumulation of Insulin-Like Growth Factor Binding Proteins in Conditioned Media, Cancer Res. 53, 5193–5198.

    PubMed  CAS  Google Scholar 

  25. 25.

    Parker, M.G. (ed.) (1991) Nuclear Hormone Receptors: Molecular Mechanisms, Cellular Functions, Clinical Abnormalities, Academic Press, London, pp. 1–404.

    Google Scholar 

  26. 26.

    Parker, M.G. (ed.) (1993) Steroid Hormone Action, IRL Press, Oxford, pp. 1–210.

    Google Scholar 

  27. 27.

    Wakeling, A.E. (1993) The Future of New Pure Antiestrogens in Clinical Breast Cancer, Breast Cancer Res. Treat. 25, 1–9.

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Perachiotti, A., and Darbre, P.D. (1994) Coculture Inserts Possess an Intrinsic Ability to Alter Growth Regulation of Human Breast Cancer Cells, Exp. Cell Res. 213, 404–411.

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Masiakowski, P., Breathnach, R., Bloch, J., Gannon, F., Krust, A., and Chambon, P. (1982) Cloning of cDNA Sequences of Hormone-Regulated Genes from the MCF-7 Human Breast Cancer Cell Line, Nucleic Acids Res. 10, 7895–7903.

    PubMed  CAS  Google Scholar 

  30. 30.

    Sundram, K., and Gapor, A. (1992) Vitamin E from Palm Oil Its Extraction and Nutritional Properties, Lipid Technolog. Peter J. Barnes, Bridgwater, England, November/December, pp. 137–141.

    Google Scholar 

  31. 31.

    Darbre, P., Yates, J., Curtis, S., and King, R.J.B. (1983) Effect of Estradiol on Human Breast Cancer Cells in Culture, Cancer Res. 43, 349–354.

    PubMed  CAS  Google Scholar 

  32. 32.

    Maniatis, T., Fitsch, F.F., and Sambrook, J. (1982) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, New York, pp. 1–545.

    Google Scholar 

  33. 33.

    Brown, A.M.C., Jeltsch, J.M., Roberts, M., and Chambon, P. (1984) Activation of pS2 Gene Transcription Is a Primary Response to Estrogen in the Human Breast Cancer Cell Line MCF-7, Proc. Natl. Acad. Sci. USA 81, 6344–6348.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Hossenlopp, P., Seurin, D., Segovia-Quinson, B., Hardouin, S., and Binoux, M. (1986) Analysis of Serum Insulin-Like Growth Factor Binding Proteins Using Western Blotting: Use of the Method for Titration of the Binding Proteins and Competitive Binding Studies, Anal. Biochem. 154, 138–143.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Salacinski, P.R.P., McLean, C., Sykes, J.E.C., Clement-Jones, V.V., and Lowry, P.J. (1981) Iodination of Proteins, Glycoproteins and Peptides Using a Solid Phase Oxidising Agent 1,3,4,6-Tetrachloro-3,6-diphenylglycouril (Iodogen), Anal. Biochem. 117, 136–146.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Corcoran, D., Perachiotti, A., and Darbre, P.D. (1996) Increased Autocrine Production of Insulin-Like Growth Factor II (IGF-II) Alters Serum Sensitivity of MCF7 Human Breast Cancer Cell Proliferation, Cell Prolif. 29, 479–493.

    PubMed  CAS  Google Scholar 

  37. 37.

    Carroll, K.K., Guthrie, N., Nesaretnam, K., Gapor, A., and Chambers, A.F. (1995) Anti-Cancer Properties of Tocotrienols from Palm Oil, in Nutrition, Lipids, Health and Disease (Ong, A.S.H., Niki, E., and Packer, L., eds.) AOCS Press, Champaign, pp. 117–121.

    Google Scholar 

  38. 38.

    Guthrie, N., Chambers, A.F., Gapor, A., and Carroll, K.K. (1995) In vitro Inhibition of Proliferation of Receptor-Positive MCF-7 Human Breast Cancer Cells by Palm Oil Tocotrienols, FASEB J. 9, A968 (abstract 5735).

    Google Scholar 

  39. 39.

    Guthrie, N., Gapor, A., Chambers, A.F., and Carroll, K.K. (1997) Inhibition of Proliferation of Estrogen Receptor-Negative MDA-MB-435 and-Positive MCF-7 Human Breast Cancer Cells by Palm Oil Tocotrienols and Tamoxifen, Alone and in Combination, J. Nutr 127, 544S-548S.

    PubMed  CAS  Google Scholar 

  40. 40.

    Guthrie, N., Gapor, A., Chambers, A.F., and Carroll, K.K. (1997) Palm Oil Tocotrienols and Plant Flavonoids Act Synergistically to Inhibit Proliferation of Estrogen Receptor-Negative MDA-MB-231 and-Positive MCF-7 Human Breast Cancer Cells in Culture, Asia Pacific J. Clin. Nutr. 6, 41–45.

    Google Scholar 

  41. 41.

    Kyprianou, N., English, H.F., Davidson, N.E., and Isaacs, J.T. (1991) Programmed Cell Death During Regression of the MCF-7 Human Breast Cancer Following Estrogen Ablation, Cancer Res. 51, 162–166.

    PubMed  CAS  Google Scholar 

  42. 42.

    Tenniswood, M.P., Guenette, R.S., Lakins, J., Mooibroek, M., Wong, P., and Welsch, J.E. (1992) Active Cell Death in Hormone-Dependent Tissues, Cancer Metastasis Rev. 11, 197–220.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Warri, A.M., Huovinen, R.L., Martikainen, P.M., and Harkonen, P.L. (1993) Apoptosis in Toremifene-Induced Growth Inhibition of Human Breast Cancer Cells in vivo and in vitro, J. Natl. Cancer. Inst. 85, 1412–1418.

    PubMed  CAS  Google Scholar 

  44. 44.

    Pagliacci, M.C., Tognellini, R., Grignani, F., and Nicoletti, I. (1991) Inhibition of Human Breast Cancer Cell (MCF-7) Growth in vitro by Somatostatin Analog SMS 201-995: Effects on Cell Cycle Parameters and Apoptotic Cell Death, Endocrinology 129, 2555–2562.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Armstrong, D.K., Isaacs, J.T., Ottaviano, Y.L., and Davidson, N.E. (1992) Programmed Cell Death in an Estrogen-Independent Human Breast Cancer Cell Line MDA-MB-468, Cancer Res. 52, 3418–3424.

    PubMed  CAS  Google Scholar 

  46. 46.

    McCloskey, D.E., Casero, R.A., Woster, P.M., and Davidson, N.E. (1995) Induction of Programmed Cell Death in Human Breast Cancer Cells by an Unsymmetrically Alkylated Polyamine Analogue, Cancer Res. 55, 3233–3236.

    PubMed  CAS  Google Scholar 

  47. 47.

    Chatelain, E., Boscoboinik, D.O., Bartoli, G.M., Kagan, V.E., Gey, F.K., Packer, L., and Azzi, A. (1993) Inhibition of Smooth Muscle Cell Proliferation and Protein Kinase C Activity by Tocopherols and Tocotrienols, Biochim. Biophys. Acta 1176, 83–89.

    PubMed  CAS  Article  Google Scholar 

  48. 48.

    Gundimeda, U., Chen, Z.H., and Gopalakrishna, R. (1996) Tamoxifen Modulates Protein Kinase C via Oxidative Stress in Estrogen Receptor-Negative Breast Cancer Cells, J. Biol. Chem. 271, 13504–13514.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Koba, K., Abe, K., Ikeda, I., and Sugano, M. (1992) Effects of Alpha-Tocopherol and Tocotrienols on Blood Pressure and Linoleic Acid Metabolism in the Spontaneously Hypertensive Rat, Biosci. Biotechnol. Biochem. 56, 1420–1423.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Rose, D.P., Connolly, J.M., and Liu, X.H. (1994) Effects of Linoleic Acid on the Growth and Metastasis of Two Human Breast Cancer Cell Lines in Nude Mice and the Invasive Capacity of These Cell Lines in vitro, Cancer Res. 54, 6557–6562.

    PubMed  CAS  Google Scholar 

  51. 51.

    Glover, J.F., Irwin, J.T., and Darbre, P.D. (1988) Interaction of Phenol Red with Estrogenic and Antiestrogenic Action on Growth of Human Breast Cancer Cells ZR-75-1 and T-47-D, Cancer Res. 48, 3693–3697.

    PubMed  CAS  Google Scholar 

  52. 52.

    Gucev, Z.S., Oh, Y., Kelley, K.M., and Rosenfeld, R.G. (1996) Insulin-Like Growth Factor Binding Protein 3 Mediates Retinoic Acid- and Transforming Growth Factor β2-Induced Growth Inhibition in Human Breast Cancer Cells, Cancer Res. 56, 1545–1550.

    PubMed  CAS  Google Scholar 

  53. 53.

    Darbre, P.D., and Daly, R.J. (1990) Transition of Human Breast Cancer Cells from an Oestrogen Responsive to Unresponsive State, J. Steroid Biochem. Molec. Biol. 37, 753–763.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Horwitz, K.B. (1994) How Do Breast Cancers Become Hormone Resistant? J. Steroid Biochem. Molec. Biol. 49, 295–302.

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Stephen, R., Corcoran, D., and Darbre, P.D. (1996) Retinoic Acid Inhibits Growth of Breast Cancer Cells in the Short-Term but Not the Long-Term, Biochem. Soc. Trans. 24, 365S.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kalanithi Nesaretnam.

About this article

Cite this article

Nesaretnam, K., Stephen, R., Dils, R. et al. Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33, 461 (1998). https://doi.org/10.1007/s11745-998-0229-3

Download citation

Keywords

  • Estradiol
  • MCF7 Cell
  • Human Breast Cancer Cell
  • Tocotrienols
  • Breast Cancer Cell Growth