Skip to main content
Log in

Rapid hydrolysis of bile acid conjugates using microwaves: Retention of absolute stereochemistry in the hydrolysis of (25R) 3α,7α,12α-trihydroxy-5β-cholestan-26-oyltaurine

  • Method
  • Published:
Lipids

Abstract

In recent years, defects of bile acid synthesis caused by disorders of peroxisome biogenesis have led to increased interest in C27 bile acids. In humans, while the majority of bile acids are C24 carboxylic acids, the presence of increased concentrations of C27 bile acids and their metabolites in hereditary diseases associated with peroxisomal dysfunction can serve as a useful marker for the intensity of the metabolic disorder. Our present studies describe an efficient method for the rapid hydrolysis of C27 and C24 bile acid conjugates using a commercial microwave oven. The advantages of this method include freedom from racemization, minimal activation, mild reaction conditions, and the highly stereocontrolled nature of the reaction, thus allowing for free bile acid recovery in high yield. For example, when (25R) 3α,7α,12α-trihydroxy-5β-cholestan-26-oyl taurine, a major compound present in the bile of Alligator mississippiensis, was deconjugated with 4% NaOH/diethylene glycol or 1 M LiOH/propylene glycol in the microwave oven for 4–6 min, 3α,7α,12α-trihydroxy-5β-cholestan-26-oic acid (THCA) was obtained in 81% yield with retention of configuration at C-25. It is suggested that present studies will be helpful in delineating the absolute stereochemistry of 3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA oxidase, the peroxisomal enzyme that catalyzes the first step in the oxidation of THCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGH:

cholylglycine hydrolase (E.C. 3.5.1.24)

FAB-MS:

fast atom bombardment-mass spectrometry

GLC:

gas-liquid chromatography

MW:

microwave oven

THCA:

3α,7α,12α-trihydroxy-5β-cholestan-26-oyl-taurine acid

TLC:

thin-layer chromatography

References

  1. Santos, M.J., Hoefler, S., Moser, A.B., Moser, H.W., and Lazarow, P.B. (1992) Peroxisome Assembly Mutations in Humans: Structural Heterogeneity in Zellweger Syndrome, J. Cell Physiol. 151, 103–112.

    Article  PubMed  CAS  Google Scholar 

  2. Shimozawa, N., Tsukamoto, T., Suzuki, Y., Orii, T., Shirayshi, Y., Mori, T., and Fujiki, Y. (1992) A Human Gene Responsible for Zellweger Syndrome That Affects Peroxisome Assembly, Science 255, 1132–1134.

    Article  PubMed  CAS  Google Scholar 

  3. Gartner, J., Moser, H., and Valle, D. (1992) Mutations in the 70k Peroxisomal Membrane Protein Gene in Zellweger Syndrome, Nature Genet. 1, 16–23.

    Article  PubMed  CAS  Google Scholar 

  4. Monnens, L., Bakkeren, J., Parmentier, G., Janssen, G., van Hjaelst, U., Trijbels, F., and Eyssen, H. (1980) Disturbances in Bile Acid Metabolism of Infants with the Zellweger (cerebrohepatorenal) Syndrome, Eur. J. Pediatr. 133, 31–35.

    Article  PubMed  CAS  Google Scholar 

  5. Hanson, R.F., Szczepanick-van Leeuwen, P., Williams, G.C., Grabowski, G., and Sharp, H.L. (1979) Defects of Bile Acid Synthesis in Zellweger's Syndrome, Science 203, 1107–1108.

    Article  PubMed  CAS  Google Scholar 

  6. Hofmann, A.F. (1977) The Enterohepatic Circulation of Bile Acids in Man, Clin. Gastroenterol. 6, 3–24.

    PubMed  CAS  Google Scholar 

  7. Carey, M.C. (1982) The Enterohepatic Circulation, in The Liver (Arias, I.M., Popper, H., Schachter, D., and Shafritz, D., eds.), pp. 429–465. Raven Press, New York.

    Google Scholar 

  8. Gibbons, G.F., Mitropoulos, K.A., and Myant, N.B. (1982) Biochemistry of Cholesterol, pp. 189–203, Elsevier Biomedical Press, Amsterdam, pp. 189–203.

    Google Scholar 

  9. Haslewood, G.A.D. (1978) The Biological Importance of Bile Salts, Elsevier-North Holland, Amsterdam.

    Google Scholar 

  10. Haslewood, G.A.D. (1967) Bile Salts, p. 16, Methuen and Co. Ltd., London.

    Google Scholar 

  11. Nair, P.R., Gordon, M., and Rebach, J. (1967) The Enzymatic Cleavage of the Carbon-Nitrogen Bond in 3α,7α,12α-Trihydroxy-5β-cholan-24-oylglycine. J. Biol. Chem. 242, 7–11.

    PubMed  CAS  Google Scholar 

  12. Huijghebaert, S.M., and Hofmann, A.F. (1986) Influence of the Amino Acid Moiety on Deconjugation of Bile Acid Amidates by Cholylglycine Hydrolase or Human Fecal Cultures, J. Lipid Res. 27, 742–752.

    PubMed  CAS  Google Scholar 

  13. Batta, A.K., Salen, G., and Shefer, S. (1984) Substrate Specificity of Cholylglycine Hydrolase for the Hydrolysis of Bile Acid Conjugates, J. Biol. Chem. 259, 15035–15039.

    PubMed  CAS  Google Scholar 

  14. Hofmann, A.F., Palmer, K.R., Toon, Y.B., Hagey, L.R., Gurantz, D., Huijghebaert, S., Converse, J.L., Cecchetti, S., and Michelotti, E. (1985) The Biological Utility of Bile Acid Conjugation with Glycine or Taurine, in Advances in Glucuronide Conjugation (Bock, K.W., Matern, S., and Gerok, W., eds.), pp. 245–264, MTP Press, Ltd., Lancaster.

    Google Scholar 

  15. Huijghebaert, S., and Hofmann, A.F. (1985) Pancreatic Carboxypeptidase Hydrolysis of Bile Acid-Amino Acid Conjugates: Selective Resistance of Glycine and Taurine Amidates, Gastroenterology 88, 1425 (abstract).

    Google Scholar 

  16. Batta, A.K., Salen, G., Chang, F.W., and Shefer, S. (1979) Cleavage of the Taurine Conjugate of 3α,7α,12α-Trihydroxy-5β-cholestan-26-oic Acid by Rat Fecal Bacteria, J. Biol. Chem. 254, 11907–11909.

    PubMed  CAS  Google Scholar 

  17. Tint, G.S., Dayal, B., Batta, A.K., Shefer, S., Joanen, T., McNease, L., and Salen, G. (1980) Biliary Bile Acids, Bile Alcohols and Sterols of Alligator mississippiensis, J. Lipid Res. 21, 110–117.

    PubMed  CAS  Google Scholar 

  18. Dayal, B., Salen, G., and Dayal, V. (1991) The Use of Microwave Oven for the Rapid Hydrolysis of Bile acid Methyl Esters, Chem. Phys. Lipids 59, 97–103.

    Article  PubMed  CAS  Google Scholar 

  19. Whitney, J.O., and Vessey, D.A. (1984) Inability of Cholylglycine Hydrolase to Cleave the Amide Bond of Tauronorcholic Acid, Steroids 44, 77–83.

    Article  PubMed  CAS  Google Scholar 

  20. Kimura, M., Hatono, S., Une, M., Fukuoka, C., Kuramoto, T., and Hoshita, T. (1984) Synthesis, Intestinal Absorption and Metabolism of Sarcosine Conjugated Ursodeoxycholic Acid, Steroids 43, 677–687.

    Article  PubMed  CAS  Google Scholar 

  21. Dayal, B., Rapole, K.R., and Salen, G. (1995) Microwave-Induced Organic Reactions of Bile Acids: Esterification, Deformylation and Deacetylation Using Mild Reagents: Methanesulfonic Acid/Methanol and or Para-Toluenesulfonic Acid/Methanol, Steroids 60, 453–457.

    Article  PubMed  CAS  Google Scholar 

  22. Dayal, B., Rapole, K.R., Wilson, S.R., Shefer, S., Tint, G.S., and Salen, G. (1995) Microwave-Induced Rapid Synthesis of Bile Acid Conjugates, Synlett (No. 8), 861–862.

    Article  Google Scholar 

  23. Dayal, B., Rapole, K.R., Patel, C., Shefer, S., Tint, G.S., and Salen, G. (1995) Microwave-Induced Rapid Synthesis of Sarcosine Conjugated Bile Acids, Bioorg. Med. Chem. Lett. 5, 1301–1306.

    Article  CAS  Google Scholar 

  24. Dayal, B., Ertel, N.H., Kothavali, M., Kristol, D., Asgaonkar, A., Pramanik, B.N., Bartner, P., and Salen, G. (1996) Microwave-Mediated Stereoselective Synthesis of 3-Ketocholesterol and Cholesterol Ester Epoxides, Eastern Anal. Symposium, Nov. 17–22, Somerset, NJ (abstract 361).

  25. Dayal, B., Ertel, N.H., Rapole, K.R., Asgaonkar, A., and Salen, G. (1997) Rapid Hydrogenation of Unsaturated Sterols and Bile Alcohols Using Microwaves, Steroids 62, 451–454.

    Article  PubMed  CAS  Google Scholar 

  26. Dayal, B., Rao, Keshava, Seong, W.M., and Salen, G. (1994) Asymmetric Syntheses and Lanthanide-Induced CD Studies of (24R and 24S) 5β-Cholestane-3α,7α,12α,24,25-pentols, Pure Appl. Chem. 66, 2037–2040.

    CAS  Google Scholar 

  27. Dayal, B., Ertel, N.H., Padia, J., Rapole, K.R., and Salen, G. (1997) 7β-Hydroxy Bile Alcohols: Facile Synthesis and 2D-1H NMR Studies of 5β-Cholestane-3α, 7β, 12α, 25-tetrol, Steroids 62, 409–414.

    Article  PubMed  CAS  Google Scholar 

  28. Batta, A.K., Salen, G., Blount, J.F., and Shefer, S. (1979) X-Ray Diffraction Studies of 3α,7α,12α-Trihydroxy-5β-cholestan-26-oic Acid (THCA), J. Lipid Res. 20, 935–940.

    PubMed  CAS  Google Scholar 

  29. Banik, B.K., Manhas, M.S., Robb, E.W., and Bose, A.K. (1997) Environmentally Benign Chemistry: Microwave-Induced Stereocontrolled Synthesis of β-Lactam Synthons, Heterocycles 44, 405–408.

    Article  CAS  Google Scholar 

  30. Bose, A.K., Banik, B.K., Jayaraman, M., Lavlinskaia, N., and Manhas, M.S. (1997) MORE Chemistry in a Microwave, Chemtech 27, 18–24.

    CAS  Google Scholar 

  31. Bose, A.K., Banik, B.K., and Manhas, M.S. (1995) Stereocontrol of β-Lactam Formation Using Microwave Irradiation, Tetrahedon. Lett. 36, 213–216.

    Article  CAS  Google Scholar 

  32. Bose, A.K., Jayaraman, M., Okawa, A., Bari, S.S., Robb, E.W., and Manhas, M.S. (1996) Microwave-Assisted Rapid Synthesis of α-Amino-α-Amino-β-Lactams, Tetrahedon Lett. 37, 6989–6992.

    Article  CAS  Google Scholar 

  33. Caddick, S. (1995) Microwave-Assisted Organic Reactions, Tetrahedon 51, 10403–10432.

    Article  CAS  Google Scholar 

  34. Abramovitch, R.A. (1991) Applications of Microwave Energy in Organic Chemistry, A Review, Org. Prep. Proceed. Int. 23, 685–711.

    Article  Google Scholar 

  35. Verma, R.S., Saini, R.K., and Meshram, H.M. (1997) Selective Oxidation of Sulfides to Sulfoxides and Sulfones by Microwave Thermolysis on Wet Silica-Supported Sodium Periodates, Tetrahedon Lett. 37, 6525–6528.

    Article  Google Scholar 

  36. Loupy, A., and Thach, N.C. (1993) Base-Catalyzed Isomerization of Eugenol: Solvent-Free Conditions and Microwave Activation, Synth. Commun. 23, 2571–2577.

    CAS  Google Scholar 

  37. Gilman, L.B., and Woodward, C. (1989) An Evaluation of Microwave Heating for the Vapor Phase Hydrolysis of Proteins, Poster Paper M197, Third Symposium, The Protein Society, Seattle, Washington, July.

  38. Sun, W.C., Guy, P.M., Jahngen, J.H., Rossomando, E.F., and Jahngen, E.G.E. (1988) Microwave-Induced Hydrolysis of Phosphoanhydride Bonds in Nucleotide Triphosphates, J. Org. Chem. 53, 4414–4416.

    Article  CAS  Google Scholar 

  39. Gopal-Srivastava, R., and Hylemon, P.B. (1988) Purification and Characterization of Bile Salt Hydrolase from Clostridium perfringens, J. Lipid Res. 29, 1079–1085.

    PubMed  CAS  Google Scholar 

  40. Pedersen, J.I., Veggan, T., and Bjorkhem, I. (1996) Substrate Stereospecificity in Oxidation of (25S)-3α,7α,12α-Trihydroxy-5β-cholestanoyl-CoA by Peroxisomal Trihydroxy-5β-cholestanoyl-CoA Oxidase, in Bile Acids in Hepatobiliary Diseases: Basic Research and Clinical Application, Proceedings of the Falk in Symposium No. 93, XIV International Bile Acid Meeting, (Paumgartner, G., Stiehl, A., and Gerok, W., eds.), Freiburg, Germany, October 22–24 (abstract 14).

  41. Setchell, K.D.R., Heubi, J.E., O'Connell, N.C., Hofmann A.F., and Lavine, J.E. (1996) Identification of a Unique Inborn Error in Bile Acid Conjugation Involving a Deficiency in Amidation, in Proceedings of the Falk Symposium, No. 93, XIV International Bile Acid Meeting, (Paumgartner, G., Stiehl, A., and Gerok, W., eds.), held in Freiburg, Germany, October 22–24 (abstract, pp. 9–10).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishambar Dayal.

About this article

Cite this article

Dayal, B., Ertel, N.H. Rapid hydrolysis of bile acid conjugates using microwaves: Retention of absolute stereochemistry in the hydrolysis of (25R) 3α,7α,12α-trihydroxy-5β-cholestan-26-oyltaurine. Lipids 33, 333–338 (1998). https://doi.org/10.1007/s11745-998-0213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0213-y

Keywords

Navigation