Skip to main content
Log in

Changes in cultured arterial smooth muscle cells isolated from chicks upon cholesterol feeding

  • Published:
Lipids

Abstract

We have developed cultures of smooth muscle cells (SMC) isolated from arterial hypercholesterolemic chicks (cholesterol-SMC). These cultures are suitable for the study at the molecular level of the changes in arterial SMC induced by a cholesterol diet. By using a strong dose of cholesterol (5%) for 10 d, we obtained very proliferative SMC which became foam cells after 30 d in culture. On the other hand, SMC cultures isolated from control-fed chicks has a lower growth rate than the SMC ones under the same culture conditions. DNA synthesis was fourfold greater in cholesterol-SMC than in control-SMC cultures. Intracellular cholesterol concentrations were the same in both cholesterol and control SMC during the first 14 d of culture but afterward increased in differing ways: after 20 d of culture the cholesterol-SMC increased their cholesterol content to double the control. We give here the results obtained from transmission electron microscopy, lipid analysis, proliferation studies, DNA, RNA and protein synthesis, and then discuss their implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco's modification of Eagle's medium

FCS:

fetal calf serum

HDL:

high density lipoprotein

LDL:

low density lipoprotein

PBS:

phosphate-buffered saline

SMC:

smooth muscle cell

References

  1. Stary, H.C., Chandler, A.B., Glagov, S., Gruyton, J.R., Insull, W., Rosenfeld, M.E., Schaffer, S.A., Schwartz, C.J., Wagner, W.D., and Wissler, R.W. (1994) A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis: A Report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association, Arterioscler. Thromb. 14, 840–856.

    PubMed  CAS  Google Scholar 

  2. Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s, Nature 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  3. Report of the 44th Annual Meeting Council on Arteriosclerosis (1990) Arteriosclerosis 10, 751–871.

  4. Faggiotto, A. (1990) New Trends in Atherosclerosis Research, in Atherosclerosis Reviews (Leaf, P., and Weber, P.C., eds.). Vol. 21, pp. 187–194, Raven Press, Ltd., New York.

    Google Scholar 

  5. Cliff, W.J. (1967) The Aortic Tunica Media in Growing Rats Studied with the Electron Microscope, Lab. Invest. 17, 599–615.

    PubMed  CAS  Google Scholar 

  6. Paule, W.J. (1963) Electron Microscopy of the Newborn Rat Aorta, J. Ultrastruct. Res. 8, 219–235.

    Article  PubMed  CAS  Google Scholar 

  7. Thyberg, J., Hedin, U., Sjölund, M., Palmberg, L., and Bottger, B.A. (1990) Regulation of Differentiated Properties and Proliferation of Arterial Smooth Muscle Cells, Arteriosclerosis 10, 966–990.

    PubMed  CAS  Google Scholar 

  8. Jonasson, L., Holm, J., Skalli, O., Bondjers, G., and Hansson, G.K. (1986) Regional Accumulations of T Cells, Macrophages, and Smooth Muscle Cells in the Human Atherosclerotic Plaque, Arteriosclerosis 6, 131–138.

    PubMed  CAS  Google Scholar 

  9. Campbell, G.R., and Campbell, J.H. (1985) Smooth Muscle Phenotypic Changes in Arterial Wall Homeostasis: Implications for the Pathogenesis of Atherosclerosis, Exp. Mol. Pathol. 42, 139–162.

    Article  PubMed  CAS  Google Scholar 

  10. Chamley-Campbell, J.H., Campbell, G.R., and Ross, R. (1979) The Smooth Muscle Cell in Culture, Physiol. Rev. 58, 1–61.

    Google Scholar 

  11. Owens, G.K. (1995) Regulation of Differentiation of Vascular Smooth Muscle Cells, Physiol. Rev. 75, 487–517.

    PubMed  CAS  Google Scholar 

  12. Campbell, J.H., Kocher, O., Skalli, O., Gabbiani, G., and Campbell, G.R. (1989) Cytodifferentiation and Expression of Alpha-Smooth Muscle Actin mRNA and Protein During Primary Culture of Aortic Smooth Muscle Cells. Correlation with Cell Density and Proliferative State, Arteriosclerosis 9, 633–643.

    PubMed  CAS  Google Scholar 

  13. Chamley-Campbell, J.H., Campbell, G.R., and Ross, R. (1981) Phenotype-Dependent Response of Cultured Aortic Smooth Muscle to Serum Mitogens, J. Cell Biol. 89, 379–383.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell, J.H., and Campbell, G.R. (1994) The Role of Smooth Muscle Cells in Atherosclerosis, Curr. Opin. Lipidol. 5, 323–330.

    Article  PubMed  CAS  Google Scholar 

  15. Dartsch, P.C., Voisard, R., Bauriedel, G., Hofling, B., and Betz, E. (1990) Growth Characteristics and Cytoskeletal Organization of Cultured Smooth Muscle Cells from Human Primary Stenosing and Restenosing Lesions, Arterosclerosis 10, 62–75.

    CAS  Google Scholar 

  16. Gabbiani, G. (1988) Cytoskeletal Features of Aortic Smooth Muscle Cells: Normal Conditions, Atheromatosis and Tissue Culture, in Structure and Functions of the Cytoskeleton (Rousset, B.A.F., ed.), Vol. 171, pp. 179–182, Colloque INSERM/John Libbely Eurotext Ltd., Montrouge.

  17. Hadjiisky, P., Bourdillon, M.C., and Grosgogeat, Y. (1991) Enzyme Histochemical Expressions of Smooth Muscle Cell Modulation in Arterial Development, Hypertension and Remodeling, Cell Mol. Biol. 37:5, 531–540.

    PubMed  CAS  Google Scholar 

  18. Gabbiani, G., Kocher, O., Bloom, W.S., Vanderkerckhove, J., and Weber, K. (1984) Actin Expression in Smooth Muscle Cells of Rat Aortic Intimal Thickening, Human Atheromatous Plaque and Cultured Rat Aortic Media, J. Clin. Invest. 73, 148–152.

    Article  PubMed  CAS  Google Scholar 

  19. Orlandi, A., Ehrlich, H.P., Ropraz, P., Spagnoli, L.G., and Gabbiani, G. (1994) Rat Aortic Smooth Muscle Cells Isolated from Different Layers and at Different Times After Endothelial Denudation Show Distinct Biological Features in vitro, Arterioscler. Thromb. 14, 982–989.

    PubMed  CAS  Google Scholar 

  20. Ross, R., and Glomset, J.A. (1973) Atherosclerosis and the Arterial Smooth Muscle Cell: Proliferation of Smooth Muscle Is a Key Event in the Genesis of the Lesions of Atherosclerosis, Science 180, 1332–1339.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfeld, M.E., and Ross, R. (1990) Macrophage and Smooth Muscle Cell Proliferation in Atherosclerotic Lesions of WHHL and Comparably Hypercholesterolemic Fat-Fed Rabbits, Arteriosclerosis 10, 680–687.

    PubMed  CAS  Google Scholar 

  22. Dusserre, E., Bourdillon, M.C., Ciavatti, M., Covacho, C., and Renaud, S. (1993) Lipid Biosynthesis in Cultured Arterial Smooth Muscle Cells Is Related to Their Phenotype, Lipids 28, 589–592.

    PubMed  CAS  Google Scholar 

  23. Dusserre, E., Bourdillon, M.C., Pulcini, T., and Berthezene, F. (1994) Decrease in High Density Lipoprotein Binding Sites Is Associated with Decrease in Intracellular Cholesterol Efflux in Dedifferentiated Aortic Smooth Muscle Cells, Biochim. Biophys. Acta 1212, 235–244.

    PubMed  CAS  Google Scholar 

  24. Grande, J., Davis, H.R., Bates, S., Mathews, M.B., and Glagov, S. (1987) Effect of an Elastin Growth Substrates on Cholesteryl Ester Synthesis and Foam Cell Formation by Cultured Aortic Smooth Muscle Cells, Atherosclerosis 68, 87–93.

    Article  PubMed  CAS  Google Scholar 

  25. Minor, L.K., Rothblat, G.H., and Glick, J.M. (1989) Triglyceride and Cholesteryl Ester Hydrolysis in a Cell Culture Model Smooth Muscle Foam Cells, J. Lipid Res. 30, 189–197.

    PubMed  CAS  Google Scholar 

  26. Moss, N.S., and Benditt, E.P. (1970) The Ultrastructure of Spontaneous and Experimentally Induced Arterial Lesions: I. An Ultrastructural Survey of the Normal Chicken Aorta, Lab. Invest. 22, 166–183.

    PubMed  CAS  Google Scholar 

  27. Moss, N.S., and Benditt, E.P. (1970) The Ultrastructure of Spontaneous and Experimentally Induced Arterial Lesions. II. The Spontaneous Plaque in the Chicken, Lab. Invest. 23, 231–239.

    PubMed  CAS  Google Scholar 

  28. Moss, N.S., and Benditt, E.P. (1970) The Ultrastructure of Spontaneous and Experimentally Induced Arterial Lesions. III. The Cholesterol-Induced Lesions and the Effect of a Cholesterol and Oil Diet on the Preexisting Spontaneous Plaque in the Chicken Aorta, Lab. Invest. 23, 521–535.

    PubMed  CAS  Google Scholar 

  29. Lucas, A., Yue, W., Jiang, X.Y., Liu, L., Yan, W., Bauer, J., Schneider, W., Tulip, J., Chagpar, A., Dait, E., Perk, M., Montague, P., Garbutt, M., and Radosavljevic, M. (1996) Development of an Avian Model for Restenosis, Atherosclerosis 119, 17–41.

    Article  PubMed  CAS  Google Scholar 

  30. Linares, A., Suarez, M., Gonzalez-Pacanouska, D., and García-PeregrÌn, E. (1981) Further Characterization of Mevalonate Metabolism in Neonatal Chick Kidney, Comp. Biochem. Physiol. 70B, 219–223.

    CAS  Google Scholar 

  31. Aguilera, J.A., Linares, A., Arce, V., and García-Peregrín, E. (1984) Effect of Dietary Cholesterol on Mevalonate Metabolism by Sterol and Non-sterol Pathways, Biochem. Biophys. Res. Commun. 122, 945–948.

    Article  PubMed  CAS  Google Scholar 

  32. Alejandre, M.J., Ramírez, H., Segovia, J.L., and García-Peregrín, E. (1985) Effect of Dietary Cholesterol and Cholestyramine on Developmental Pattern of 3-Hydroxy-3-methylglutaryl-CoA Reductase, Ann. Nutr. Metab. 29, 111–118.

    Article  PubMed  CAS  Google Scholar 

  33. Aguilera, J.A., García-Molina, V., Linares, A., Arce, V., and García-Peregrín, E. (1988) Inhibition of Hepatic Cholesterogenesis During Postnatal Development. Role of Different Nonsaponifiable Lipids Accumulated After Cholesterol Feeding, Nutr. Rep. Int. 37, 113–121.

    CAS  Google Scholar 

  34. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  35. Habenicht, A.J.R., Glonset, J.A., and Ross, R. (1980) Relation of Cholesterol and Mevalonic Acid to the Cell Cycle in Smooth Muscle and Swiss 3T3 Cells Stimulated to Divide by Platelet-Derived Growth Factor, J. Biol. Chem. 255, 5134–5140.

    PubMed  CAS  Google Scholar 

  36. Ross, R. (1971) The Smooth Muscle Cell. II. Growth of Smooth Muscle in Culture and Formation of Elastic Fibers, J. Cell Biol. 50, 172–186.

    Article  PubMed  CAS  Google Scholar 

  37. Brithaite, A.W., and Palni, L.M.S. (1986) Inhibition of Mevalonate Synthesis with Compactin Does Not Prevent DNA Replication in Cultured Animal Cells, Eur. J. Cell Biol. 41, 121–126.

    Google Scholar 

  38. Lowry, Q.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  39. Segovia, J.L., García-González, M., and Alejandre, M.J. (1994) The Role of Age on the Cholesterol-Metabolizing Enzymes and Lipid Levels in Chick Plasma and Liver Microsomes After Cholesterol Enriched Diet Cessation, Biochem. Mol. Biol. Int. 34, 93–100.

    PubMed  CAS  Google Scholar 

  40. Mol, M.A.E., Desmet, R.C., Terpstra, A.H.M., and West, C.E. (1982) Effect of Dietary Protein and Cholesterol on Cholesterol Concentration and Lipoprotein Pattern in the Serum of Chickens, J. Nutr. 112, 1029–1035.

    PubMed  CAS  Google Scholar 

  41. Díaz, R., González, F.J., Reyes, M., Muros, M.A., Rodríguez, E., Aránega, A., and Linares, A. (1991) Fifth Creteil Symposium on Lipids, Lipoproteins and Nutrition: Isolation and Culture of Vascular Smooth Cells During an Experimental Atherosclerosis, Ann. Nutr. Metab. 35, 368–372.

    Google Scholar 

  42. Reyes, M., Gonzalez, F.J., Diaz, R., Torres, I., Rodriguez, E., Gonzalez, E., Rios, A., and Linares A. (1991) Fifth Creteil Symposium on Lipids, Lipoproteins and Nutrition: Proliferation Studies of Cultured Smooth Muscle Cells During Early Stages of an Experimental Atherosclerosis, Ann. Nutr. Metab. 35, 370–371.

    Google Scholar 

  43. Faggiotto, A., Ross, R., and Harker, L. (1984) Hypercholesterolemia in the Nonhuman Primate. 1. Changes That Lead to Fatty Streak Formation, Arteriosclerosis 4, 323–340.

    PubMed  CAS  Google Scholar 

  44. Jerome, W.G., and Lewis, J.C. (1984) Early Atherogenesis in White Carneau Pigeons. I. Leukocyte Margination and Endothelial Alterations at the Celiac Bifurcation, Am. J. Pathol. 116, 56–68.

    PubMed  CAS  Google Scholar 

  45. Florentin, R.A., Nam, S.C., Lee, K.T., Lee, K.T., and Thomas, W.A. (1969) Increased Mitotic Activity in Aortas of Swine After Three Days of Cholesterol Feeding, Arch. Pathol. 88, 463–469.

    PubMed  CAS  Google Scholar 

  46. Noble, R.C., and Cocchi, M. (1990) Lipid Metabolism and the Neonatal Chicken, Prog. Lipid Res. 29, 107–114.

    Article  PubMed  CAS  Google Scholar 

  47. Cho, B.H.S., Lawson, L.D., Toda, T., and Kummerow, F.A. (1984) Oxidation of Fatty Acid by Heart Mitochondria of Chickens with Endogenous Hyperlipidemia, Biochem. Med. 31, 347–354.

    Article  PubMed  CAS  Google Scholar 

  48. Dartsch, P.C., Ischinger, T., and Betz, E. (1990) Differential Effect of Photofrin II on Growth of Human Smooth Muscle Cells from Nonatherosclerotic Arteries and Atheromatous Plaques in vitro, Arteriosclerosis 10, 616–624.

    PubMed  CAS  Google Scholar 

  49. Pickering, J.G., Weir, L., Rosenfeld, K., Stetz, J., Jikanowski, J., and Isner, J.M. (1992) Smooth Muscle Cells Outgrowth from Human Atherosclerotic Plaque Implications for the Assessment of Lesion Biology, J. Am. Coll. Cardiol. 20, 430–439.

    Article  Google Scholar 

  50. Edwards, I.J., and Wagner, W.D. (1988) Distinct Synthetic and Structural Characteristics of Proteoglycans Produced by Cultured Artery Smooth Cells of Atherosclerosis-Susceptible Pigeons, J. Biol. Chem. 263, 9612–9620.

    PubMed  CAS  Google Scholar 

  51. Nachtigal, M., Nagpal, M.L., Greenspan, P., Nachtigal, S.A., and Legrand, A. (1989) Characterization of a Continuous Smooth Muscle Cell Liver Derived from Rabbit Aorta, In Vitro Cell Dev. Biol. 25, 892–898.

    PubMed  CAS  Google Scholar 

  52. Blaes, N., Bourdillon, M.C., Daniel-Lamaziere, J.M., Michaille, J.J., Andujar, M., and Covacho, C. (1991) Isolation of Two Morphologically Distinct Cell Lines from Rat Arterial Smooth Muscle Expressing High Tumorigenic Potentials, In Vitro Cell Dev. Biol. 27, 725–734.

    Google Scholar 

  53. Wakabayashi, K. (1990) Animal Studies Suggesting Involvement of Mutagen/Carcinogen Exposure in Atherosclerosis, Mutat. Res. 239, 181–187.

    PubMed  CAS  Google Scholar 

  54. Hruban, P.H., Beschorner, W.E., Baumgartner, W.A., Augustine, S.M., Ren, H., Reitz, B.A., and Hutchins, G.M. (1990) Accelerated Arteriosclerosis in Heart Transplant Recipients Is Associated with a T-Lymphocyte-Mediated Endothelialitis, Am. J. Pathol. 137, 871–882.

    PubMed  CAS  Google Scholar 

  55. Brown, M.S., and Goldstein, J.L. (1983) Lipoprotein Metabolism in the Macrophage: Implications for Cholesterol Deposition in Atherosclerosis, Annu. Rev. Biochem. 52, 223–261.

    Article  PubMed  CAS  Google Scholar 

  56. Rohrer, L., Freeman, M., Kodama, T., Penman, M., and Krieger, M. (1990) Coiled-Coil Fibrous Domains Mediate Ligand Binding by Macrophage Scavenger Receptor Type II, Nature 343, 570–572.

    Article  PubMed  CAS  Google Scholar 

  57. Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P., and Krieger, M. (1990) Type I Macrophage Scavenger Receptor Contains α-Helical and Collagen-Like Coiled Coils, Nature 343, 531–535.

    Article  PubMed  CAS  Google Scholar 

  58. Hoover, G.A., McCormick, S., and Kalant, N. (1988) Interaction of Native and Cell-Modified Low Density Lipoprotein with Collagen Gel, Arteriosclerosis 8, 525–534.

    PubMed  CAS  Google Scholar 

  59. Brown, M.S., and Goldstein, J.L. (1990) Scavenging for Receptors, Nature 343, 508–509.

    Article  PubMed  CAS  Google Scholar 

  60. Benditt, E.P., and Benditt, J.M. (1973) Evidence for a Monoclonal Origin of Human Atherosclerotic Plaques, Proc. Natl. Acad. Sci. USA 70, 1753–1956.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Linares.

About this article

Cite this article

Carazo, A., Alejandre, M.J., Diaz, R. et al. Changes in cultured arterial smooth muscle cells isolated from chicks upon cholesterol feeding. Lipids 33, 181–190 (1998). https://doi.org/10.1007/s11745-998-0194-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0194-x

Keywords

Navigation