Skip to main content


Log in

Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on fatty acid absorption, incorporation into serum phospholipids and postprandial triglyceridemia

  • Published:


Fourteen healthy volunteers were randomly allocated to receive 4 g highly purified ethyl esters of eicosapentaenoic acid (EPA) (95% pure, n=7) or docosahexaenoic acid (DHA) (90% pure, n=7) daily for 5 wk in supplement to their ordinary diet. The n−3 fatty acids were given with a standard high-fat meal at the beginning and the end of the supplementation period. EPA and DHA induced a similar incorporation into chylomicrons which peaked 6 h after the meal. The relative uptake of EPA and DHA from the meal was >90% compared with the uptake of oleic acid. During absorption, there was no significant elongation or retroconversion of EPA or DHA in total chylomicron fatty acids. The concentration of EPA decreased by 13% and DHA by 62% (P<0.001) between 6 and 8 h after the meal. During the 5-wk supplementation period, EPA showed a more rapid and comprehensive increase in serum phospholipids than did DHA. DHA was retroconverted to EPA, whereas EPA was elongated to docosapentaenoic acid (DPA). The postprandial triglyceridemia was suppressed by 19 and 49% after prolonged intake of EPA and DHA, respectively, indicating that prolonged intake of DHA is equivalent to or even more efficient than that of EPA in lowering postprandial triglyceridemia. This study indicates that there are metabolic differences between EPA and DHA which may have implications for the use of n−3 fatty acids in preventive and clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others





docosahexaenoic acid


docosapentaenoic acid


ethyl esters


ereosapentaenoic acid


fatty acid


high density lipoproteins


linoleic acid


  1. Schmidt, E.B., and Dyerberg, J. (1994) Omega-3 Fatty Acids: Current Status in Cardiovascular Medicine, Drugs 47, 405–424.

    Article  PubMed  CAS  Google Scholar 

  2. Hansen, J.B., Lyngmo, V., Svensson, B., and Nordøy, A. (1993) Inhibition of Exercise-Induced Shortening of Bleeding Time by Fish Oil in Familial Hypercholesterolemia (Type lla), Arterioscler. Thromb. 13, 98–104.

    PubMed  CAS  Google Scholar 

  3. Zilversmit, D.B. (1979) Atherogenesis: A Postprandial Phenomenon, Circulation 60, 473–485.

    PubMed  CAS  Google Scholar 

  4. Barrit, D.W. (1956) Alimentary Lipaemia in Men with Coronary Artery Disease and in Controls, Br. Med. J. 2, 640–644.

    Article  Google Scholar 

  5. Brown, D.F., Heslin, A.S., and Doyle, J.T. (1961) Postprandial Lipemia in Health and in Ischemic Heart Disease: A Comparison of Three Indexes of Fat Absorption and Removal and Their Modification by Systemic Heparin Administration, N. Engl. J. Med. 264, 733–737.

    Article  CAS  Google Scholar 

  6. Patsch, J.R., Miesenböck, G., Hopferwieser, T., Mühlberger, V., Knapp, E., Dunn, J.K., Gotto, A.M. Jr., and Patsch, W. (1992) Relation of Triglyceride Metabolism and Coronary Artery Disease: Studies in the Postprandial State, Arterioscler. Thromb. 12, 1336–1345.

    PubMed  CAS  Google Scholar 

  7. Weintraub, M.S., Zechner, R., Brown, A., Eisenberg, S., and Breslow, J.L. (1988) Dietary Polyunsaturated Fats of the n−6 and n−3 Series Reduce Postprandial Lipoprotein Levels, J. Clin. Invest. 82, 1884–1893.

    PubMed  CAS  Google Scholar 

  8. Harris, W.S., Connor, W.E., Alam, N., and Illingworth, D.R. (1988) Reduction of Postprandial Triglyceridemia in Humans by Dietary n−3 Fatty Acids, J. Lipid. Res. 29, 1451–1460.

    PubMed  CAS  Google Scholar 

  9. Harris, W.S., and Muzio, F. (1993) Fish Oil Reduces Postprandial Triglyceride Concentrations Without Accelerating Lipid-Emulsion Removal Rates, Am. J. Clin. Nutr. 58, 68–74.

    PubMed  CAS  Google Scholar 

  10. Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M., and Berge, R.K. (1993) Docosahexaenoic Acid Shows No Triglyceride-Lowering Effects But Increases the Peroxisomal Fatty Oxidation in Liver of Rats, J. Lipid. Res. 34, 13–22.

    PubMed  CAS  Google Scholar 

  11. Grimsgaard, S., Bønaa, K.H., Hansen, J.B., and Nordøy, A. (1997) Highly Purified Eicosapentaenoic Acid and Docosa-hexaenoic Acid in Humans Have Similar Triacylglycerol Lowering Effects, But Divergent Effects on Plasma Fatty Acids, Am. J. Clin. Nutr. 66, 649–659.

    PubMed  CAS  Google Scholar 

  12. Bønaa, K.H., Bjerve, K.S., and Nordøy, A. (1992) Docosahexaenoic and Eicosapentaenoic Acids in Plasma Phospholipids Are Divergently Associated with High Density Lipoprotein in Humans, Arterioscler. Thromb. 12, 675–681.

    PubMed  Google Scholar 

  13. El Boustani, S., Coletta, C., Monnier, L., Descomps, B., Crastes de Paulet, A., and Mendy, F. (1987) Enteral Absorption in Man of Eicosapentaenoic Acid in Different Chemical Forms, Lipids 22, 711–714.

    PubMed  Google Scholar 

  14. Lawson, L.D., and Hughes, B.G. (1988) Human Absorption of Fish Oil Fatty Acids as Triglycerides, Free Acids or Ethyl Esters, Biochem. Biophys. Res. Commun. 152, 328–335.

    Article  PubMed  CAS  Google Scholar 

  15. Nordøy, A., Barstad, L., Connor, W.E., And Hatcher, L. (1991) Absorption of the n−3 Eicosapentaenoic and Docosahexaenoic Acids as Ethyl Esters and Triglycerides by Humans, Am. J. Clin. Nutr. 53, 1185–1190.

    PubMed  Google Scholar 

  16. Hansen, J.B., Olsen, J.O., Wilsgård, L., Lyngmo, V., and Svensson, B. (1993) Comparative Effects of Prolonged Intake of Highly Purified Fish Oils as Ethyl Ester or Triglyceride on Lipids, Haemostasis and Platelet Function in Normolipemic Men, Eur. J. Clin. Nutr. 47, 497–507.

    PubMed  CAS  Google Scholar 

  17. Krokan, H.E., Bjerve, K.S., and Mørk, E. (1993) The Enteral Bioavailability of Eicosapentaenoic and Docosahexaenoic Acid Is as Good as from Ethyl Esters as from Glyceryl Esters in Spite of Lower Hydrolytic Rates by Pancreatic Lipase in vitro, Biochim. Biophys. Acta. 1168, 59–67.

    PubMed  CAS  Google Scholar 

  18. Aviram, M., Brox, J., and Nordøy, A. (1986) Effects of Postprandial Plasma and Chylomicrons on Endothelial Cells, Acta. Med. Scand. 219, 341–348.

    Article  PubMed  CAS  Google Scholar 

  19. Folch, J., Lees M., and Stanley, S. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissue, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  20. Kaluzny, M.A., Duncan, L.A., Merritt, M.V., and Epps, D.E. (1985) Rapid Separation of Lipid Classes in High Yield and Purity Using Bonded Phase Columns, J. Lipid. Res. 26, 135–140.

    PubMed  CAS  Google Scholar 

  21. Sas Institute, Inc: SAS/STAT guide for personal computers, version 6. Edn. Cary NC, SAS Institute 1987/1990.

    Google Scholar 

  22. Heimermann, W.R., Hohman, R.T., Gordon, D.T., Korvalyskyn, D.E., and Jensen, R.G. (1973) Effect of Double Bond Position in Octadecenoates upon Hydrolysis of Pancreatic Lipase, Lipids 8, 45–47.

    PubMed  CAS  Google Scholar 

  23. Yang, L.Y., Kukis, A., and Myker, J.J. (1990) Lipolysis of Menhaden Oil Triacyl Glycerols in vitro: A Reexamination, J. Lipid. Res. 31, 137–147.

    PubMed  CAS  Google Scholar 

  24. Neuringer, M., Anderson, G.J., and Connor, W.E. (1988) The Essentiality of n−3 Fatty Acids for the Development and Function of the Retina and Brain, Annu. Rev. Nutr. 8, 517–541.

    Article  PubMed  CAS  Google Scholar 

  25. Anderson, G.J., Tso, P.S., and Connor, W.E. (1994) Incorporation of Chylomicron Fatty Acids into the Developing Rat Brain, J. Clin. Invest. 93, 2764–2767.

    Article  PubMed  CAS  Google Scholar 

  26. Terano, T., Hirai, A., Hamazaki, T., Kobayashi, S., Fujita, T., Tamura, Y., and Kumagai, A. (1983) Effect of Oral Administration of Highly Purified Eicosapentaenoic Acid on Platelet Function, Blood Viscosity, and Red Cell Deformability in Healthy Human Subjects, Atherosclerosis 46, 321–331.

    Article  PubMed  CAS  Google Scholar 

  27. von Schacky, C., and Weber, P.C. (1985) Metabolism and Effects on Platelet Function of the Purified Eicosapentaenoic and Docosahexaenoic Acids in Humans, J. Clin. Invest. 76, 2446–2450.

    Google Scholar 

  28. Schlenk, H., Sand, D.M., and Gellerman, J.L. (1969) Retroconversion of Docosahexaenoic Acid in the Rat, Biochim. Biophys. Acta. 187, 201–207.

    PubMed  CAS  Google Scholar 

  29. Stoffel, W., Ecker, W., Assad, H., and Sprecher, H. (1970) Enzymatic Studies on the Mechanism of the Retroconversion of C22-Polyenoic Fatty Acids to Their C20 Homologues, Z. Physiol. Chem. 351, 1545–1554.

    CAS  Google Scholar 

  30. Connor, W.E., DeFrancesco, C.A., and Connor, S.L. (1993) n-3 Fatty Acids from Fish Oil. Effects on Plasma Lipoproteins and Hypertriglyceridemic Patients, Ann. NY. Acad. Sci. 683, 16–34.

    PubMed  CAS  Google Scholar 

  31. Ranheim, T., Gedde-Dahl, A., Rustan, A.C., and Drevon, C.A. (1992) Influence of Eicosapentaenoic Acid (20:5n−3) on Secretion of Lipoproteins in CaCo-2 Cells, J. Lipid. Res. 33, 1281–1293.

    PubMed  CAS  Google Scholar 

  32. Rustan, A.C., Nossen, J.O., Christiansen, E.N., and Drevon, C.A. (1988) Eicosapentaenoic Acid Reduces Hepatic Synthesis and Secretion of Triacylglycerol by Decreasing the Activity of Acyl-Coenzyme A:1,2-Diacylglycerol Acyltransferase, J. Lipid Res. 29, 1417–1426.

    PubMed  CAS  Google Scholar 

  33. Lang, C.A., and Davis, R.A. (1990) Fish Oil Fatty Acids Impair VLDL Assembly and/or Secretion by Cultured Rat Hepatocytes, J. Lipid. Res. 31, 2079–2086.

    PubMed  CAS  Google Scholar 

  34. Wong, S.H., Nestel, P.J., Trimble, R.P., Storer, G.B., Illman, R.J., and Topping, D.L. (1984) The Adaptive Effects of Dietary Fish and Safflower Oil on Lipid and Lipoprotein Metabolism in Perfused Rat Liver, Biochim. Biophys. Acta. 792, 103–109.

    PubMed  CAS  Google Scholar 

  35. Wong, S., Fisher, E.A., and Marsh, J.B. (1989) Effects of Eicosapentaenoic and Docosahexaenoic Acids on Apoprotein B mRNA and Secretion of Very Low Density Lipoproteins in HepG2 Cells, Arteriosclerosis 9, 836–841.

    PubMed  CAS  Google Scholar 

  36. Martin, L.J., Reaidi, G.B., Gavino, G.R., and Gavino, V.C. (1991) Effect of 4, 7, 10, 13, 16, 19-Docosahexaenoic Acid on Triglyceride Accumulation and Secretion in Rat Hepatocytes in Culture, Lipids 26, 374–380.

    PubMed  CAS  Google Scholar 

  37. Simons, L.A., Dwyer, T., Simons, J., Bernstein, L., Mock, P., Poonia, N.S., Balasubramaniam, S., Baron, D., Branson, J., Morgan, J., and Roy, P. (1987) Chylomicrons and Chylomicron Remnants in Coronary Artery Disease: A Case-Control Study, Atherosclerosis 65, 181–189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to John-Bjarne Hansen.

About this article

Cite this article

Hansen, JB., Grimsgaard, S., Nilsen, H. et al. Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on fatty acid absorption, incorporation into serum phospholipids and postprandial triglyceridemia. Lipids 33, 131–138 (1998).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: