Skip to main content
Log in

Phospholipid fatty acid composition in type I and type II rat muscle

  • Published:
Lipids

Abstract

The fatty acid composition of the membrane phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine in insulin-sensitive Type I (soleus) and insulin-resistant Type II (EDL) muscle is not known. In the present studies, soleus and EDL muscles were removed from 250–300 g Sprague-Dawley rats, and the fatty acid composition of total and individual phospholipid (PL) species was quantitated. As expected, triglyceride content was increased twofold in soleus muscle. No quantitative differences in the individual PL species or cholesterol content were found between the two muscles. However, a striking difference in PL fatty acid composition was observed in the PC fraction. An increase in 16∶0 with decreases in 18∶0, 18∶1, 22∶5n-3, and 22∶6n-3 (P<0.001 for each) was observed in the PC fraction of EDL compared to that from soleus, consistent with reduced elongation of PC fatty acids. Inhibition of fatty acid oxidation with the carnitine palmitoyl transferase-1 inhibitor, etomoxir, did not alter the fatty acid pattern in either muscle. We conclude that an alteration in PL fatty acid composition consistent with reduced elongation of both saturated and unsaturated fatty acids is observed in Type II muscle. The restriction of these alterations to the PC fraction has important implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

cardiolipin

DAG:

diacylglycerol

EDL:

extensor digitorum longus

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PL:

phospholipid

TG:

triglycerides

References

  1. James, D.E., Jenkins A.B., and Kraegen E.W. (1985) Heterogeneity of Insulin Action in Individual Muscles in vivo: Euglycemic Clamp Studies in Rats, Am. J. Physiol. 248, E567-E580.

    PubMed  CAS  Google Scholar 

  2. James, D.E., Burleigh, K.M., Storlien, L.H., Bennett, S.P., and Kraegen, E.W. (1986) Heterogeneity of Insulin Action in Muscle: Influence of Blood Flow, Am. J. Physiol. 251, E422-E430.

    PubMed  CAS  Google Scholar 

  3. Sherman, W.M., Katz, A.L., Cutler, C.L., Withers, R.T., and Ivy, J.L. (1988) Glucose Transport: Locus of Muscle Insulin Resistance in Obese Zucker rats, Am. J. Physiol. 255, E374-E382.

    PubMed  CAS  Google Scholar 

  4. Richter, E.A., Garetto, L.P., Goodman, M.N., and Ruderman, N.B. (1984) Enhanced Muscle Glucose Metabolism After Exercise: Modulation by Local Factors, Am. J. Physiol. 246, E476-E482.

    PubMed  CAS  Google Scholar 

  5. Kern, M., Wells, J.A., Stephens, J.M., Elton, C.W., Friedman, J.E., Tapscott, E.B., Pekala, P.H., and Dohm, G.L. (1990) Insulin Responsiveness in Skeletal Muscle Is Determined by Glucose Transporter (Glut 4) Protein Level, Biochem. J. 270, 397–400.

    PubMed  CAS  Google Scholar 

  6. Ploug, T., Galbo, H., Vinten, J., Jorgensen, M., and Richter, E.A. (1987) Kinetics of Glucose Transport in Rat Muscles: Effect of Insulin and Contractions, Am. J. Physiol. 253, E12-E20.

    PubMed  CAS  Google Scholar 

  7. Henriksen, J.E., Bourey, R.E., Rodnick, K.J., Koranyi, L., Permutt, M.A., and Holloszy, J.O. (1990) Glucose Transporter Protein Content and Glucose Transport Capacity in Rat Skeletal muscles, Am. J. Physiol. 259, E593-E598.

    PubMed  CAS  Google Scholar 

  8. Bonen, A., Tan, M.H., Cline, P., and Watson-Wright, W.M. (1981) Insulin Binding and Glucose Uptake Differences in Rodent Skeletal Muscles, Diabetes 30, 702–704.

    PubMed  CAS  Google Scholar 

  9. Webster, B.A., Vigna, S.R., and Paquette, T. (1986) Acute Exercise, Epinephrine and Diabetes Enhance Insulin Binding to Skeletal Muscle, Am. J. Physiol. 250, E186-E197.

    PubMed  CAS  Google Scholar 

  10. James, D.E., Zorzano, A., Boni-Schnetzler, M., Nemenoff, R.A., Powers A., Pilch, P.F., and Ruderman, N.B. (1986) Intrinsic Differences in Insulin Receptor Kinase Activity in Red and White Muscle, J. Biol. Chem. 261, 14939–14944.

    PubMed  CAS  Google Scholar 

  11. Marette, A., Richardson, J.M., Ramlal, T., Babon, T.W., Vranic, M., Pessin, J.E., and Klip, A. (1992) Abundance, Localization and Insulin-Induced Translocation of Glucose Transporters in Red and White Muscle, Am. J. Physiol. 263, C443-C452.

    PubMed  CAS  Google Scholar 

  12. Ginsberg, B.H., Chatterjee, P., and Yorek, M.A. (1991) Insulin Sensitivity Is Increased in Friend Erythroleukemia Cells Enriched in Polyunsaturated Fatty Acid, Receptor 1, 155–166.

    PubMed  CAS  Google Scholar 

  13. Hague, T.A. (1988) Effects of Unsaturated Fatty Acids on Cell Membrane Functions, Scand. J. Clin. Lab. Invest. 48, 381–388.

    Google Scholar 

  14. Cullis P.R. and Hope M.J. (1985) Physical Properties and Functional Roles of Lipids in Membranes. Chapter 2 in Biochemistry of Lipids and Membranes (Vance, D.E., and Vance, J.E., eds.), Benjamin/Cummings Publishing Co., Inc., Menlo Park.

    Google Scholar 

  15. Ariano, M.A., Armstrong, R.B., and Edgerton, V.R. (1973) Hindlimb Muscle Fiber Populations of Five Mammals, J. Histochem. Cytochem. 21, 51–55.

    PubMed  CAS  Google Scholar 

  16. Barnett, M., Collier, G.R., and O’Dea, K. (1992) The Longitudinal Effect of Inhibiting Fatty Acid Oxidation in Diabetic Rats Fed a High Fat Diet. Horm. Metab. Res. 24, 360–362.

    Article  PubMed  CAS  Google Scholar 

  17. Folch, J., Lees, M., and Stanley, H.S. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  18. Alvarez, J.G., and Ludman, J. (1993) Semi-Automated Multi Sample Analysis of Amniotic Fluid Lipids by High-Performance Thin-Layer Chromatography—Reflectance Spectrodensitometry, J. Chromatogr. 615, 142–147.

    PubMed  CAS  Google Scholar 

  19. Macala, L.J., Yu, R.K., and Ando, S. (1983) Analysis of Brain Lipids by High Performance Thin-Layer Chromatography and Densitometry, J. Lipid Res. 24, 1243–1250.

    PubMed  CAS  Google Scholar 

  20. Vaysse, J., Pilardeau, P., and Garnier, M. (1985) Rapid Quantitative Analysis of Phospholipids in Biological Fluids After Thin-Layer Chromatography, Clin. Chem. Acta. 147, 183–190.

    Article  CAS  Google Scholar 

  21. Storlien, L.H., Jenkins, A.B., Chisholm, D.J., Pascoe, W.S., Khouri, S., and Kraegen, E.W. (1991) Influence of Dietary Fat Composition on Development of Insulin Resistance in Rats: Relationship to Muscle Triglyceride and Omega-8 Fatty Acids in Muscle Phospholipid, Diabetes 40, 280–289.

    PubMed  CAS  Google Scholar 

  22. Horrocks, L.A. (1968) The Alk-1-Enyl Group Content ofMammalian Myelin Phosphoglycerides by Quantitative Two-Dimensional Thin-Layer Chromatography, J. Lipid Research 9, 469–472.

    CAS  Google Scholar 

  23. Rawn, J.D. (1989) The Structure of Biological Membranes, in Proteins, Energy and Metabolism, pp. 209–232, Neil Patterson Publishers, Burlington.

    Google Scholar 

  24. Cook, H.W. (1991) Fatty Acid Desaturation and Chain Elongation in Eucaryotes, in Biochemistry of Lipids, Lipoproteins and Membranes (Vance, D.E., and Vance, J., eds.), pp. 141–169, Elsevier, Amsterdam.

    Google Scholar 

  25. Holub, B.J. (1978) Differential Utilization of 1-Palmitoyl and 1-Stearoyl Homologues of Various Unsaturated 1,2-Diacyl-sn-Glycerols for Phosphatidylcholine and Phosphatidyl-Ethanolamine Synthesis in Rat Liver Microsomes, Am. J. Chem. 253, 691–693.

    CAS  Google Scholar 

  26. Bordoni, A., Biagi, P.L., Turchetto, E., Rossi, C.A., and Hrelia, S. (1992) Diacylglycerol Fatty Acid Composition Is Related to Activation of Protein Kinase C in Cultured Cardiomyocytes, Cardioscience 3, 251–255.

    PubMed  CAS  Google Scholar 

  27. Wahle, K.W., Milne, L., and McIntosh, G. (1991) Regulation of Polyunsaturated Fatty Acid Metabolism in Tissue Phospholipids of Obese (fa/fa) and Lean (Fa/-) Zucker Rats 1. Effect of Dietary Lipids on Cardiac Tissue, Lipids 26, 16–22.

    PubMed  CAS  Google Scholar 

  28. Cook, H.W., and Spence, M.W. (1987) Interaction of (n-3) and (n-6) Fatty Acids in Desaturation and Chain Elongation of Essential Fatty Acids in Cultured Glioma Cells, Lipids 22, 613–619.

    PubMed  CAS  Google Scholar 

  29. Vance, D.E. (1990) Phosphatidylcholine Metabolism: Masochistic Enzymology, Metabolic Regulation, and Lipoprotein Assembly, Biochem. Cell. Biol. 68, 1151–1165.

    Article  PubMed  CAS  Google Scholar 

  30. Diez, E., Chilton, F.H., Stroup, G., Mayer, R.J., Winkler, J.D., and Fonteh, A.N. (1994) Fatty Acid and Phospholipid Selectivity of Different Phospholipase A2 Enzymes Studied by Using a Mammalian Membrane as Substrate, Biochem. J. 301, 721–726.

    PubMed  CAS  Google Scholar 

  31. Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., and Campbell, L.V. (1993) The Relation Between Insulin Sensitivity and the Fatty Acid Composition of Skeletal Muscle Phospholipids, New Eng. J. Med. 328, 238–244.

    Article  PubMed  CAS  Google Scholar 

  32. Pan, D.A., Lillioja, S., Milner, M.R., Kriketos, A.D., Baur, L.A., Bogardus, C., and Storlien, L.H. (1995) Skeletal Muscle Membrane Lipid Composition Is Related to Adiposity and Insulin Action, J. Clin. Invest. 96, 2802–2808.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased (June 28, 1996).

About this article

Cite this article

Blackard, W.G., Li, J., Clore, J.N. et al. Phospholipid fatty acid composition in type I and type II rat muscle. Lipids 32, 193–198 (1997). https://doi.org/10.1007/s11745-997-0024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0024-1

Keywords

Navigation