Skip to main content
Log in

Peroxidase-catalyzed oxidation of β-carotene in HL-60 cells and in model systems: Involvement of phenoxyl radicals

  • Published:
Lipids

Abstract

Recent studies provide extensive evidence for the importance of carotenoids in protecting against oxidative stress associated with a number of diseases. In particular, reactions of carotenoids with phenoxyl radicals generated by peroxidasecatalyzed one-electron metabolism of phenolic compounds may represent an important antioxidant function of carotenoids. To further our understanding of the antioxidant mechanisms of carotenoids, we used in the present work two different phenolic compounds, phenol and a polar homologue of vitamin E (2,2,5,7,8-pentamethyl-6-hydroxychromane, PMC), as representatives of two different types of phenols to study reactions of their respective phenoxyl radicals with carotenoids in cells and in model systems. We found that phenoxyl radicals of PMC did not oxidize β-carotene in either HL-60 cells or in model systems with horseradish peroxidase (HRP)/H2O2. In contrast, the phenoxyl radicals generated from phenol (by native myeloperoxidase in HL-60 cells or HRP/H2O2 in model systems) effectively oxidized β-carotene and other carotenoids (canthaxanthin, lutein, lycopene). One-electron reduction of the phenoxyl radical by ascorbate (assayed by electron spin resonance-detectable formation of semidehydroascorbyl radicals) prevented HRP/H2O2-induced oxidation of β-carotene. PMC, but not phenol, protected β-carotene against oxidation induced by a lipid-soluble azo-initiator of peroxyl radicals. No adducts of peroxidase/phenol/H2O2-induced β-carotene oxidation intermediates with phenol were detected by high-performance liquid chromatography-mass spectrometry analysis of the reaction mixture. Since carotenoids are essential constituents of the antioxidant defenses in cells and biological fluids, their depletion through the reaction with phenoxyl radicals formed from endogenous, nutritional and environmental phenolics, as well as phenolic drugs, may be an important factor in the development of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azo-bis(2-amidinopropane)dihydrochloride

AMVN:

2,2′-azo-bis(2,4-dimethylvaleronitrile)

DOPC:

1,2-dioleoylphosphatidylcholine

ESR:

electron spin resonance

HPLC:

high-performance liquid chromatography

HRP:

horseradish peroxidase

LDL:

low density lipoprotein

MS:

mass spectrometry

PMC:

2,2,5,7,8-pentamethyl-6-hydroxychromane

PMSF:

phenylmethylsulfonyl fluoride

THF:

tetrahydrofuran

UV:

ultraviolet

References

  1. Barclay, L.R.C., Locke, S.J., MacNeil, J.M., Van Kessel, J., Burton, G.W., and Ingold, K.U. (1984) Autoxidation of “Micelles” and Model Membranes: Quantitative Kinetic Measurements Can Be Made by Using Either Water-Soluble or Lipid-Soluble Initiators with Water-Soluble or Lipid-Soluble Chain-Breaking Antioxidants, J. Am. Chem. Soc. 106, 2479–2481.

    Article  CAS  Google Scholar 

  2. Yamamoto, Y., Haga, S., Niki, E., and Kamiya, Y. (1984) Oxidation of Lipids. V. Oxidation of Methyl Linoleate in Aqueous Dispersions, Bull. Chem. Soc. Jpn. 57, 1260–1264.

    Article  CAS  Google Scholar 

  3. Mukai, K., Kageyama, Y., Ishida, T., and Fukuda, K. (1989) Synthesis and Kinetic Study of Antioxidant Activity of New Tocopherol (vitamin E) Compounds, J. Org. Chem. 54, 552–556.

    Article  CAS  Google Scholar 

  4. Pryor, W.A., Cornicelli, J.A., Devall, L.J., Tait, B., Trivedi, D.T., Witiak, D.T., and Wu, M. (1993) A Rapid Screening Test to Determine the Antioxidant Potencies of Natural and Synthetic Antioxidants, J. Org. Chem. 58, 3521–3532.

    Article  CAS  Google Scholar 

  5. Eastmond, D.A., Smith, M.T., Ruzo, L.O., and Ross, D. (1986) Metabolic Activation of Phenol by Human Myeloperoxidase and Horseradish Peroxidase, Mol. Pharmacol. 30, 674–679.

    PubMed  CAS  Google Scholar 

  6. Schreiber, J., Foureman, G.L., Hughes, M.F., Mason, R.P., and Eling, T.E. (1989) Detection of Glutathione Thiyl Free Radical Catalyzed by Prostaglandin H Synthase Present in Keratinocytes. Study of Co-Oxidation in a Cellular System, J. Biol. Chem. 264, 7936–7943.

    PubMed  CAS  Google Scholar 

  7. Eisenstein, O., Giessner-Prettre, C., Maddaluno, J., Stussi, D., and Weber, J. (1992) Theoretical Study of Oxyhemocyanin Activesite: A Possible Insight on the First Step of Phenol Oxidation by Tyrosinase, Arch. Biochem. Biophys. 296, 247–255.

    Article  PubMed  CAS  Google Scholar 

  8. Stoyanovsky, D.A., Goldman, R., Claycamp, H.G., and Kagan, V.E. (1995) Phenoxyl Radical-Induced Thiol-Dependent Generation of Reactive Oxygen Species: Implications for Benzene Toxicity, Arch. Biochem. Biophys. 317, 315–323.

    Article  PubMed  CAS  Google Scholar 

  9. Mao, S.S., Holler, T.P., Yu, G.X., Bollinger, J.M., Jr., Booker, S., Johnston, M.I., and Stubbe, J. (1992) A Model for the Role of Multiple Cysteine Residues Involved in Ribonucleotide Reduction: Amazing and Still Confusing, Biochemistry 31, 9733–9743.

    Article  PubMed  CAS  Google Scholar 

  10. Ormo, M., Regnstrom, K., Wang, Z., Que, L., Jr., Sahlin, M., and Sjoberg, B.M. (1995) Residues Important for Radical Stability in Ribonucleotide Reductase from Escherichia coli, J. Biol. Chem. 270, 6570–6576.

    Article  PubMed  CAS  Google Scholar 

  11. Foti, M., Ingold, K.U., and Lusztyk, J. (1994) The Surprisingly High Reactivity of Phenoxyl Radicals, J. Am. Chem. Soc. 116, 9440–9447.

    Article  CAS  Google Scholar 

  12. Goldman, R., Stoyanovsky, D.A., Day, B.W., and Kagan, V.E. (1995) Reduction of Phenoxyl Radicals by Thioredoxin Results in Selective Oxidation of its SH-Groups to Disulfides. An Antioxidant Function of Thioredoxin, Biochemistry 34, 4765–4772.

    Article  PubMed  CAS  Google Scholar 

  13. Tyurina, Y.Y., Tyurin, V.A., Yalowich, J.C., Quinn, P.J., Claycamp, H.G., Schor, N.F., Pitt, B.R., and Kagan, V.E. (1995) Phenoxyl Radicals of Etoposide (VP-16) Can Directly Oxidize Intracellular Thiols: Protective Versus Damaging Effects of Phenolic Antioxidants, Toxicol. Appl. Pharmacol. 131, 277–288.

    Article  PubMed  CAS  Google Scholar 

  14. Braun, S., and Vonbruchhausen, F. (1994) Vitamin-E or Probucol as Donors for Oxidation of Human Low-Density-Lipoprotein by Peroxidases H2O2, Pharmacology 49, 325–335.

    PubMed  CAS  Google Scholar 

  15. Kalyanaraman, B., Darleyusmar, V., Struck, A., Hogg, N., and Parthasarathy, S. (1995) Role of Apolipoprotein B-Derived Radical and Alpha-Tocopheroxyl Radical in Peroxidase-Dependent Oxidation of Low Density Lipoprotein, J. Lipid Res. 36, 1037–1045.

    PubMed  CAS  Google Scholar 

  16. Miller, Y.I., Felikman, Y., and Shaklai, N. (1996) Hemoglobin-Induced Apolipoprotein-B Cross-Linking in Low Density Lipoprotein Peroxidation, Arch. Biochem. Biophys. 326, 252–260.

    Article  PubMed  CAS  Google Scholar 

  17. Santanam, N., and Parthasarathy, S. (1995) Paradoxical Actions of Antioxidants in the Oxidation of Low Density Lipoprotein by Peroxidases, J. Clin. Inv. 95, 2594–2600.

    Article  CAS  Google Scholar 

  18. Palozza, P., and Krinsky, N.I. (1992) β-Carotene and α-Tocopherol are Synergistic Antioxidants, Arch. Biochem. Biophys. 297, 184–187.

    Article  PubMed  CAS  Google Scholar 

  19. Palozza, P., and Krinsky, N.I. (1992) Astaxanthin and Canthaxanthin Are Potent Antioxidants in a Membrane Model, Arch. Biochem. Biophys. 297, 291–295.

    Article  PubMed  CAS  Google Scholar 

  20. Palozza, P., and Krinsky, N.I. (1992) Antioxidants Effects of Carotenoids in vivo and in vitro: An Overview, Meth. Enzymol. 213, 163–170.

    Google Scholar 

  21. Palozza, P., Luberto, C., and Bartoli, G.M. (1995) The Effect of Fatty Acid Unsaturation on the Antioxidant Activity of β-Carotene and α-Tocopherol in Hexane Solutions, Free Radical Biol. Med. 18, 943–948.

    Article  CAS  Google Scholar 

  22. Tsuchihashi, H., Kigoshi, M., Iwatsuki, M., and Niki, E. (1995) Action of β-Carotene as an Antioxidant Against Lipid Peroxidation, Arch. Biochem. Biophys. 323, 137–147.

    Article  PubMed  CAS  Google Scholar 

  23. Handelman, G.J. (1996) Carotenoids as Scavengers of Active Oxygen Species, in Handbook of Antioxidants (Cadenas E., and Packer L., eds.) pp. 259–314, Marcel Dekker, New York.

    Google Scholar 

  24. Palozza, P., Calviello, G., and Bartoli, G.M. (1995) Prooxidant Activity of β-Carotene Under 100% Oxygen Pressure in Rat Liver Microsomes, Free Radical Biol. Med. 19, 887–892.

    Article  CAS  Google Scholar 

  25. Burton, G.W., and Ingold, K.U. (1984) β-Carotene, An Unusual Type of Lipid Antioxidant, Science 224, 569–573.

    Article  PubMed  CAS  Google Scholar 

  26. Burton, G.W. (1989) Antioxidant Action of Carotenoids, J. Nutr. 119, 109–111.

    PubMed  CAS  Google Scholar 

  27. Palozza, P., Luberto, C., Ricci, P., Sgarlata, E., Caviello, G., and Bartoli, G.M. (1996) Effect of β-Carotene and Canthaxanthin on tert-Butyl Hydroperoxide-Induced Lipid Peroxidation in Murine Normal and Tumor Thymocytes, Arch. Biochem. Biophys. 325, 145–151.

    Article  PubMed  CAS  Google Scholar 

  28. Nonaka, T., Mio, M., Doi, M., and Tasaka, K. (1992) Histamine-Induced Differentiation of HL-60 cells. The Role cAMP and Protein Kinase A, Biochem. Pharmacol. 44, 1115–1691.

    Article  PubMed  CAS  Google Scholar 

  29. Lang, J.K., Cohil, K., and Packer, L. (1986) Simultaneous Determination of Tocopherols, Ubiquinols, and Ubiquinones in Blood, Plasma, Tissue Homogenates and Subcellular Fraction, Anal. Biochem. 157, 106–116.

    Article  PubMed  CAS  Google Scholar 

  30. Moore, K.L., Moronne, M.M., and Mehlhorn, R.J. (1992) Electron Spin Resonance Study of Peroxidase Activity and Kinetics, Arch. Biochem. Biophys. 299, 47–56.

    Article  PubMed  CAS  Google Scholar 

  31. Liebler, D.C., and McClure, T.D. (1996) Antioxidant Reactions of β-Carotene—Identification of Carotenoid-Radical Adducts, Chem. Res. Toxicol. 9, 8–11.

    Article  PubMed  CAS  Google Scholar 

  32. Partridge, R.S., Monroe, S.M., Parks, J.K., Johnson, K., Parker, Jr., W.D., Eaton, G.R., and Eaton, S.S. (1994) Spin Trapping of Azidyl and Hydroxyl Radicals in Azide-Inhibited Rat Brain Submitochondrial Particles, Arch. Biochem. Biophys. 310, 210–217.

    Article  PubMed  CAS  Google Scholar 

  33. Omelka, L., and Kovacova, J. (1994) Spin-Trapping of Sterically Unhindered Phenoxyl Radicals with Nitrosobenzene and Nitrosodurene, Magnet. Reson. Chem. 32, 525–531.

    Article  CAS  Google Scholar 

  34. Packer, J.E., Slater, T.F., and Wilson, R.L. (1979) Direct Observation of a Free Radical Interaction Between Vitamin E and Vitamin C, Nature 278, 737–738.

    Article  PubMed  CAS  Google Scholar 

  35. Kagan, V.E., Serbinova, E.A., and Packer, L. (1990) Recycling and Antioxidant Activity of Tocopherol Homologues of Differing Hydrocarbon Chainlength in Liver Microsomes, Arch. Biochem. Biophys. 282, 221–225.

    Article  PubMed  CAS  Google Scholar 

  36. Kagan, V.E. (1988) Lipid Peroxidation in Biomembranes, pp. 1–184, CRC Press, Boca Raton.

    Google Scholar 

  37. Kagan, V.E., Freileben, H.J., Tsuchiya, M., Forte, T., and Packer, L. (1991) Generation of Probucol Radicals and Their Reduction by Ascorbate and Dihidrolipoic Acid in Human Low Density Lipoproteins, Free Radical Res. Commun. 15, 2403–2413.

    Google Scholar 

  38. Kagan, V.E., Yalowich, J.C., Day, B.W., Goldman, R.R., and Stoyanovsky, D.A. (1994) Ascorbate Is the Primary Reductant of the Phenoxyl Radical of Etoposide (VP-16) in the Presence of Thiols Both in Cell Homogenates and in Model Systems. Biochemistry 33, 9651–9660.

    Article  PubMed  CAS  Google Scholar 

  39. Packer, L., and Kagan, V.E. (1993) Vitamin E: The Antioxidant Harvesting Center of Membranes and Lipoproteins, in Vitamin E: Biochemistry and Clinical Applications (Packer, L., and Fuchs, J., eds.) pp. 179–192, Marcel Dekker, New York.

    Google Scholar 

  40. Sies, H., Stahl, W., and Sundquist, A.R. (1992) Vitamins E and C, β-Carotene, and Other Carotenoids, Ann. N.Y. Acad. Sci. 669, 7–20.

    Article  PubMed  CAS  Google Scholar 

  41. The α-Tocopherol, β-Carotene Cancer Prevention Study Group (1994) The Effect of Vitamin E and β-Carotene on the Incidence of Lung Cancer and Other Cancers in Male Smokers, New Engl. J. Med. 330, 1029–1035.

    Article  Google Scholar 

  42. Britton, G. (1995) Structure and Properties of Carotenoids in Relation to Function, FASEB J. 9, 1551–1558.

    PubMed  CAS  Google Scholar 

  43. Weitberg, A.B., Weizman, S.A., Clark, E.P., and Stossel, T.P. (1985) Effects of Antioxidants on Oxidant-Induced Sister Chromatid Exchange Formation, J. Clin. Invest. 75, 1835–1841.

    PubMed  CAS  Google Scholar 

  44. Rousseau, E.J., Davison, A.J., and Dunn, B. (1992) Protection by β-Carotene and Related Compounds Against Oxygen-Mediated Cytotoxicity and Genotoxicity: Implications for Carcinogenesis and Anticarcinogenesis, Free Radical Biol. Med. 13, 407–433.

    Article  CAS  Google Scholar 

  45. Esterbauer, H., Puhl, H., Dieber-Rotheneder, M., Waeg, G., and Rabl, H. (1991) Effect of Antioxidants on Oxidative Modification of LDL, Ann. Med. 23, 573–581.

    PubMed  CAS  Google Scholar 

  46. Suarna, C., Hood, R.L., Dean, R.T., and Stocker, R. (1993) Comparative Antioxidant Activity of Tocotrienols and Other Natural Lipid-Soluble Antioxidants in a Homogenous System, and in Rat and Human Lipoproteins, Biochim. Biophys. Acta 1166, 163–170.

    PubMed  CAS  Google Scholar 

  47. Bowry, V.W., Ingold, K.V., and Stocker, R. (1992) Vitamin E in Human Low Density Lipoprotein: When and How This Antioxidant Becomes a Prooxidant, Biochem. J. 288, 341–344.

    PubMed  CAS  Google Scholar 

  48. Kettle, A.J., Gedye, C.A., Hampton, M.B., and Winterbourn, C.C. (1995) Inhibition of Myeloperoxidase by Benzoic Acid Hydrazides, Biochem. J. 308, 559–563.

    PubMed  CAS  Google Scholar 

  49. Kanner, J., and Kinsella, J.E. (1983) Lipid Deterioration Initiated by Phagocytic Cells in Muscle Foods: β-Carotene Destruction by a Myeloperoxidase-Hydrogen Peroxide-Halide System, J. Agric. Food Chem. 31, 370–376.

    Article  PubMed  CAS  Google Scholar 

  50. Steinbeck, M.J., Khan, A.U., and Karnovsky, M.J. (1992) Intracellular Singlet Oxygen Generation by Phagocytosing Neutrophils in Response to Particles Coated with a Chemical Trap, J. Biol. Chem. 267, 13425–13433.

    PubMed  CAS  Google Scholar 

  51. Heinecke, J.W., Li, W., Mueller, D.M., Bohrer, A., and Turk, J. (1994) Cholesterol Chlorohydrin Synthesis by the Myeloperoxidase-Hydrogen Peroxide-Chloride System: Potential Markers for Lipoproteins Oxidatively Damaged by Phagocytes, Biochemistry 33, 10127–10136.

    Article  PubMed  CAS  Google Scholar 

  52. Heinecke, J.W., Li, W., Daehnke, 3rd, H.L., and Goldstein, J.A. (1993) Dityrosine, A Specific Marker of Oxidation, Is Synthesized by the Myeloperoxidase-Hydrogen Peroxide System of Human Neutrophils and Macrophages, J. Biol. Chem. 268, 4069–4077.

    PubMed  CAS  Google Scholar 

  53. Stoyanovsky, D.A., Goldman, R., Jonnalagadda, S.S., Day, B.W., Claycamp, H.G., and Kagan, V.E. (1996) Detection and Characterization of the Electron Paramagnetic Resonance-Silent Glutathionyl-5,5-Dimethyl-1-Pyrroline N-Oxide Adduct Derived from Redox Cycling of Phenoxyl Radicals in Model Systems and HL-60 Cells, Arch. Biochem. Biophys. 330, 3–11.

    Article  CAS  Google Scholar 

  54. Subrahmanyam, V.V., Ross, D., Eastmond, D.A., and Smith, M.T. (1991) Potential Role of Free Radicals in Benzene-Induced Myelotoxicity and Leukemia, Free Radical Biol. Med. 1, 495–515.

    Article  Google Scholar 

  55. Snyder, R., Witz, G., and Goldstein, B.D. (1993) The Toxicology of Benzene, Environ. Health Persp. 100, 293–306.

    CAS  Google Scholar 

  56. Niki, E. (1990) Free Radical Initiators as Source of Water- and Lipid-Soluble Peroxyl Radicals, Meth. Enzymol. 186, 100–108.

    PubMed  CAS  Google Scholar 

  57. Qin, Y., and Wheeler, R.A. (1995) Tyrosine Phenoxyl Radical Structures, Vibrational Frequencies, and Spin-Densities, J. Am. Chem. Soc. 117, 6083–6092.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tyurin, V.A., Carta, G., Tyurina, Y.Y. et al. Peroxidase-catalyzed oxidation of β-carotene in HL-60 cells and in model systems: Involvement of phenoxyl radicals. Lipids 32, 131–142 (1997). https://doi.org/10.1007/s11745-997-0017-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0017-0

Keywords

Navigation