Skip to main content
Log in

Tissue Uptake Mechanisms Involved in the Clearance of Non-Protein Nanoparticles that Mimic LDL Composition: A Study with Knockout and Transgenic Mice

  • Original Article
  • Published:
Lipids

Abstract

Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with 3H-cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA-I KO than in WT. In apoA-I transgenic mice, LDE clearance was lower than in apoA-I KO and than in apoA-I KO infusion with human HDL. Infusion of human HDL into the apoA-I KO mice resulted in higher LDE clearance than in the apoA-I transgenic mice (p < 0.05). In apoA-I KO and apoA-I KO infused human HDL, the liver uptake was greater than in WT animals and apoA-I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A-I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA-I also influences those processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3H–CE:

3H-cholesteryl ether

apoA-I:

Apolipoprotein A-I

apoB100:

Apolipoprotein B100

apoE/A-I:

Apolipoprotein E/apolipoprotein A-I

apoE3:

Apolipoprotein E3

apoE:

Apolipoprotein E

KO:

Knockout

LDL:

Low density lipoprotein

LDLR:

Low density lipoprotein receptor

SR-BI:

Scavenger receptor class B type I

WT:

Wild type

References

  1. Maranhão RC, Cesar TB, Pedroso-Mariani SR, Hirata MH, Mesquita CH (1993) Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein. Lipids 28:691–696

    Article  PubMed  Google Scholar 

  2. Maranhão RC, Roland IA, Toffoletto O, Ramires JA, Gonçalves RP, Mesquita CH, Pileggi F (1997) Plasma kinetic behavior in hyperlipidemic subjects of a lipidic microemulsion that binds to low density lipoprotein receptors. Lipids 32:627–633

    Article  PubMed  Google Scholar 

  3. Hirata RD, Hirata MH, Mesquita CH, Cesar TB, Maranhão RC (1999) Effects of apolipoprotein B-100 on the metabolism of a lipid microemulsion model rats. Biochim Biophys Acta 1437:53–62

    Article  CAS  PubMed  Google Scholar 

  4. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz J, Kouiavskaia D, Migliorini M, Robinson S, Saenko EL, Gorlatova N, Li D, Lawrence D, Hyman BT, Weisgraber KH, Strickland DK (2005) The apo E isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res 46:1721–1731

    Article  CAS  PubMed  Google Scholar 

  6. Mangili OC, Moron Gagliardi AC, Mangili LC, Mesquita CH, Machado Cesar LA, Tanaka A, Schaefer EJ, Maranhão RC, Santos RD (2014) Favorable effects of ezetimibe alone or in association with simvastatin on the removal from plasma of chylomicrons in coronary heart disease subjects. Atherosclerosis 233:319–325

    Article  CAS  PubMed  Google Scholar 

  7. Maranhão RC, Garicochea B, Silva EL, Dorlhiac-Llacer P, Cadena SM, Coelho IJ, Meneghetti JC, Pileggi FJ, Chamone DA (1994) Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia. Cancer Res 54:4660–4666

    PubMed  Google Scholar 

  8. Ho YK, Smith RG, Brown MS, Goldstein JL (1978) Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood 52:1099–1114

    CAS  PubMed  Google Scholar 

  9. Maranhão RC, Garicochea B, Silva EL, Llacer PD, Pileggi FJ, Chamone DA (1992) Increased plasma removal of microemulsions resembling the lipid phase of low-density lipoproteins (LDL) in patients with acute myeloid leukemia: a possible new strategy for the treatment of the disease. Braz J Med Biol Res 25:1003–1007

    PubMed  Google Scholar 

  10. Maranhão RC, Graziani SR, Yamaguchi N, Melo RF, Latrilha MC, Rodrigues DG, Couto RD, Schreier S, Buzaid AC (2002) Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol 49:487–498

    Article  PubMed  Google Scholar 

  11. Hungria VT, Latrilha MC, Rodrigues DG, Bydlowski SP, Chiattone CS, Maranhão RC (2004) Metabolism of a cholesterol-rich microemulsion (LDE) in patients with multiple myeloma and a preliminary clinical study of LDE as a drug vehicle for the treatment of the disease. Cancer Chemother Pharmacol 53:51–60

    Article  CAS  PubMed  Google Scholar 

  12. Maranhão RC, Tavares ER, Padoveze AF, Valduga CJ, Rodrigues DG, Pereira MD (2008) Paclitaxel associated with cholesterol-rich nanoemulsions promotes atherosclerosis regression in the rabbit. Atherosclerosis 197:959–966

    Article  PubMed  Google Scholar 

  13. Tavares ER, Freitas FR, Diament J, Maranhão RC (2011) Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions. Int J Nanomed 6:2297–2304

    CAS  Google Scholar 

  14. Bulgarelli A, Leite AC Jr, Dias AA, Maranhão RC (2013) Anti-atherogenic effects of methotrexate carried by a lipid nanoemulsion that binds to LDL receptors in cholesterol-fed rabbits. Cardiovasc Drugs Ther 27:531–539

    Article  CAS  PubMed  Google Scholar 

  15. Leite AC Jr, Solano TV, Tavares ER, Maranhão RC (2015) Use of combined chemotherapy with etoposide and methotrexate, both associated to lipid nanoemulsions for atherosclerosis treatment in cholesterol-fed rabbits. Cardiovasc Drugs Ther 29:15–22

    Article  CAS  PubMed  Google Scholar 

  16. Daminelli EN, Martinelli AE, Bulgarelli A, Freitas FR, Maranhão RC (2016) Reduction of atherosclerotic lesions by the chemotherapeutic agent carmustine associated to lipid nanoparticles. Cardiovasc Drugs Ther 30:433–443

    Article  CAS  PubMed  Google Scholar 

  17. Lourenço-Filho DD, Maranhão RC, Méndez-Contreras CA, Tavares ER, Freitas FR, Stolf NA (2011) An artificial nanoemulsion carrying paclitaxel decreases the transplant heart vascular disease: a study in a rabbit graft model. J Thorac Cardiovasc Surg 141:1522–1528

    Article  PubMed  Google Scholar 

  18. Maranhão RC, Tavares ER (2015) Advances in non-invasive drug delivery for atherosclerotic heart disease. Expert Opin Drug Deliv 12:1135–1147

    Article  PubMed  Google Scholar 

  19. Maranhão RC, Vital CG, Tavoni TM, Graziani SR (2017) Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opin Drug Deliv 14:1217–1226

    Article  PubMed  Google Scholar 

  20. Ades A, Carvalho JP, Graziani SR, Amancio RF, Souen JS, Pinotti JA, Maranhão RC (2001) Uptake of a cholesterol-rich emulsion by neoplastic ovarian tissues. Gynecol Oncol 82:84–87

    Article  CAS  PubMed  Google Scholar 

  21. Azevedo CH, Carvalho JP, Valduga CJ, Maranhão RC (2005) Plasma kinetics and uptake by the tumor of a cholesterol-rich microemulsion (LDE) associated to etoposide oleate in patients with ovarian carcinoma. Gynecol Oncol 97:178–182

    Article  CAS  PubMed  Google Scholar 

  22. Graziani SR, Igreja FA, Hegg R, Meneghetti C, Brandizzi LI, Barboza R, Amancio RF, Pinotti JA, Maranhão RC (2002) Uptake of a cholesterol-rich emulsion by breast cancer. Gynecol Oncol 85:493–497

    Article  CAS  PubMed  Google Scholar 

  23. Stein Y, Halperin G, Stein O (1980) Biological stability of [3H]cholesteryl oleyl ether in cultured fibroblasts and intact rat. FEBS Lett 111:104–106

    Article  CAS  PubMed  Google Scholar 

  24. Rodrigues DG, Covolan CC, Coradi ST, Barboza R, Maranhão RC (2002) Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol 54:765–772

    Article  CAS  PubMed  Google Scholar 

  25. Valduga CJ, Fernandes DC, Lo Prete AC, Azevedo CH, Rodrigues DG, Maranhão RC (2003) Use of a cholesterol-rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J Pharm Pharmacol 55:1615–1622

    Article  CAS  PubMed  Google Scholar 

  26. Teixeira RS, Curi R, Maranhão RC (2004) Effects on Walker 256 tumour of carmustine associated with a cholesterol-rich microemulsion (LDE). J Pharm Pharmacol 56:909–914

    Article  CAS  PubMed  Google Scholar 

  27. Rodrigues DG, Maria DA, Fernandes DC, Valduga CJ, Couto RD, Ibañez OC, Maranhão RC (2005) Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies. Cancer Chemother Pharmacol 55:565–576

    Article  CAS  PubMed  Google Scholar 

  28. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  29. Glass CK, Pittman RC, Keller GA, Steinberg D (1983) Tissue sites of degradation of apoprotein A-I in the rat. J Biol Chem 258:7161–7167

    CAS  PubMed  Google Scholar 

  30. Chroni A, Liu T, Gorshkova I, Kan HY, Uehara Y, Von Eckardstein A, Zannis VI (2003) The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220–231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. J Biol Chem 278:6719–6730

    Article  CAS  PubMed  Google Scholar 

  31. Laccotripe M, Makrides SC, Jonas A, Zannis VI (1997) The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein. J Biol Chem 272:17511–17522

    Article  CAS  PubMed  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  33. Pitas RE, Innerarity TL, Mahley RW (1980) Cell surface receptor binding of phospholipid protein complexes containing different ratios of receptor-active and -inactive E apoprotein. J Biol Chem 255:5454–5460

    CAS  PubMed  Google Scholar 

  34. Zannis VI, Just PW, Breslow JL (1981) Human apolipoprotein E isoprotein subclasses are genetically determined. Am J Hum Genet 33:11–24

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zannis VI, Breslow JL, Utermann G, Mahley RW, Weisgraber KH, Havel RJ, Goldstein JL, Brown MS, Schonfeld G, Hazzard WR, Blum C (1982) Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res 23:911–914

    CAS  PubMed  Google Scholar 

  36. Kypreos KE, Zannis VI (2006) LDL receptor deficiency or apoE mutations prevent remnant clearance and induce hypertriglyceridemia in mice. J Lipid Res 47:521–529

    Article  CAS  PubMed  Google Scholar 

  37. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Investig 92:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Segrest JP, Harvey SC, Zannis V (2000) Detailed molecular model of apolipoprotein A-I on the surface of high-density lipoproteins and its functional implications. Trends Cardiovasc Med 10:246–252

    Article  CAS  PubMed  Google Scholar 

  39. Brundert M, Ewert A, Heeren J, Behrendt B, Ramakrishnan R, Greten H, Merkel M, Rinninger F (2005) Scavenger receptor class B type I mediates the selective uptake of high-density lipoprotein-associated cholesteryl ester by the liver in mice. Arterioscler Thromb Vasc Biol 25:143–148

    Article  CAS  PubMed  Google Scholar 

  40. Zannis VI, Chroni A, Krieger M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 84:276–294

    Article  CAS  Google Scholar 

  41. Kent AP, Stylianou IM (2011) Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepat Med 3:29–44

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Gayle Forbes (in memoriam) (Boston University) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul C. Maranhão.

Ethics declarations

Funding

This study was supported by National Council for Scientific and Technological Development (CNPq, Brasília, Brazil; Grant 473031/2012-4), São Paulo State Research Support Foundation (FAPESP, São Paulo, Brazil; Grant 14/03742-0), and Boston University (Boston, MA, USA). Dr. Maranhão has a Research Carrier Award from CNPq.

Conflict of interest

The authors declare they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daminelli, E.N., Fotakis, P., Mesquita, C.H. et al. Tissue Uptake Mechanisms Involved in the Clearance of Non-Protein Nanoparticles that Mimic LDL Composition: A Study with Knockout and Transgenic Mice. Lipids 52, 991–998 (2017). https://doi.org/10.1007/s11745-017-4306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4306-6

Keywords

Navigation