, Volume 52, Issue 10, pp 803–822 | Cite as

Dietary Fatty Acid Composition Modulates Obesity and Interacts with Obesity-Related Genes

Review Article


The prevalence of obesity is skyrocketing worldwide. The scientific evidence has associated obesity risk with many independent factors including the quality of dietary fat and genetics. Dietary fat exists as the main focus of dietary guidelines targeting obesity reduction. To prevent/minimize the adipogenic effect of dietary fatty acids (FA), intakes of long-chain saturated- and trans-FA should be reduced and substituted with unsaturated FA. The optimal proportions of dietary unsaturated FA are yet to be defined, along with a particular emphasis on the need to achieve a balanced ratio of n-3:n-6 polyunsaturated FA and to increase monounsaturated FA consumption at the expense of saturated FA. However, inter-individual variability in weight loss in response to a dietary intervention is evident, which highlights the importance of exploring gene–nutrient interactions that can further modulate the risk for obesity development. The quality of dietary fat was found to modulate obesity development by interacting with genes involved in fatty acid metabolism, adipogenesis, and the endocannabinoid system. This review summarizes the current knowledge on the effect of the quality of dietary fat on obesity phenotype and obesity-related genes. The evidence is not only supporting the modulatory effect of fat quality on obesity development but also presenting a number of interactions between obesity-related genes and the quality of dietary fat. The identified gene–FA interaction may have a clinical importance and holds a promise for the possibility of using genetically targeted dietary interventions to reduce obesity risk in the future.


Dietary fatty acids Fat quality Obesity Body composition Obesity-related gene Gene–diet interaction 



11β-hydroxysteroid dehydrogenase type-1


Body mass index


1 CCAAT-enhancer binding protein-α


Fatty acids


Medium-chain fatty acid


Medium-chain triglyceride


Monounsaturated fatty acid

n-3 PUFA

Omega-3 polyunsaturated fatty acid

n-6 PUFA

Omega-6 polyunsaturated fatty acid


Proliferator activated receptor-alpha


Proliferator activated receptor-delta


Proliferator activated receptor-gamma


Polyunsaturated fatty acid


Subcutaneous adipose tissue


Saturated fatty acid


Sterol regulatory element binding protein-1


Fat mass and obesity-associated gene


Visceral adipose tissue


Waist circumference


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Garaulet M, Hernandez-Morante JJ, Tebar FJ, Zamora S (2011) Relation between degree of obesity and site-specific adipose tissue fatty acid composition in a Mediterranean population. Nutrition 27:170–176PubMedCrossRefGoogle Scholar
  2. 2.
    Bastien M, Poirier P, Lemieux I, Despres JP (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56:369–381PubMedCrossRefGoogle Scholar
  3. 3.
    James WP (2008) The epidemiology of obesity: the size of the problem. J Intern Med 263(4):336–352PubMedCrossRefGoogle Scholar
  4. 4.
    Fall T, Ingelsson E (2014) Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol 382:740–757PubMedCrossRefGoogle Scholar
  5. 5.
    Gillingham LG, Robinson KS, Jones PJ (2012) Effect of high-oleic canola and flaxseed oils on energy expenditure and body composition in hypercholesterolemic subjects. Metabolism 61:1598–1605PubMedCrossRefGoogle Scholar
  6. 6.
    Field AE, Willett WC, Lissner L, Colditz GA (2007) Dietary fat and weight gain among women in the Nurses’ Health Study. Obes (Silver Spring) 15:967–976CrossRefGoogle Scholar
  7. 7.
    Liu X, Kris-Etherton PM, West SG, Lamarche B, Jenkins DJ, Fleming JA, McCrea CE, Pu S, Couture P, Connelly PW, Jones PJ (2016) Effects of canola and high-oleic-acid canola oils on abdominal fat mass in individuals with central obesity. Obes (Silver Spring) 24:2261–2268CrossRefGoogle Scholar
  8. 8.
    Piers LS, Walker KZ, Stoney RM, Soares MJ, O’Dea K (2003) Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br J Nutr 90:717–727PubMedCrossRefGoogle Scholar
  9. 9.
    Alves RD, Moreira AP, Macedo VS, de Cassia Goncalves Alfenas R, Bressan J, Mattes R, Costa NM (2014) Regular intake of high-oleic peanuts improves fat oxidation and body composition in overweight/obese men pursuing a energy-restricted diet. Obes (Silver Spring) 22:1422–1429CrossRefGoogle Scholar
  10. 10.
    Krishnan S, Cooper JA (2014) Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr 53:691–710PubMedCrossRefGoogle Scholar
  11. 11.
    Stevenson JL, Clevenger HC, Cooper JA (2015) Hunger and satiety responses to high-fat meals of varying fatty acid composition in women with obesity. Obes (Silver Spring) 23:1980–1986CrossRefGoogle Scholar
  12. 12.
    Mennella I, Savarese M, Ferracane R, Sacchi R, Vitaglione P (2015) Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans. Food Funct 6:204–210PubMedCrossRefGoogle Scholar
  13. 13.
    Koh-Banerjee P, Chu NF, Spiegelman D, Rosner B, Colditz G, Willett W, Rimm E (2003) Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16 587 US men. Am J Clin Nutr 78:719–727PubMedGoogle Scholar
  14. 14.
    Kien CL, Bunn JY (2008) Gender alters the effects of palmitate and oleate on fat oxidation and energy expenditure. Obes (Silver Spring) 16:29–33CrossRefGoogle Scholar
  15. 15.
    Lyon HN, Hirschhorn JN (2005) Genetics of common forms of obesity: a brief overview. Am J Clin Nutr 82:215s–217sPubMedGoogle Scholar
  16. 16.
    Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, Kathiresan S (2017) Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317(6):626–634PubMedCrossRefGoogle Scholar
  17. 17.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Magi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Hua Zhao J, Zhao W, Chen J, Fehrmann R, Hedman AK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Mateo Leach I, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stancakova A, Strawbridge RJ, Ju Sung Y, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Arnlov J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Bluher M, Bohringer S, Bonnycastle LL, Bottcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Ida Chen YD, Clarke R, Daw EW, de Craen AJ, Delgado G, Dimitriou M, Doney AS, Eklund N, Estrada K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M, Grabe HJ, Grallert H, Grammar TB, Grassler J, Gronberg H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson A, Jolley J, Juliusdottir T, Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindstrom J, Sin Lo K, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PK, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Muller G, Muller-Nurasyid M, Musk AW, Nagaraja R, Nothen MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Vernon Smith A, Smolonska J, Stanton AV, Steinthorsdottir V, Stirrups K, Stringham HM, Sundstrom J, Swertz MA, Swift AJ, Syvanen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh HW, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, Brennan EP, Choi M, Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gadin JR, Gharavi AG, Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y, Perry JR, Dorajoo R, Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Van’t Hooft FM, Vinkhuyzen AA, Westra HJ, Zheng W, Zondervan KT, Heath AC, Arveiler D, Bakker SJ, Beilby J, Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, Chasman DI, Chines PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini E, Ferrieres J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G, Hovingh GK, Humphries SE, Hunt SC, Hypponen E, Illig T, Jacobs KB, Jarvelin MR, Jockel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J, Kastelein JJ, Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimaki T, Lyssenko V, Mannisto S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Madden PA, Pasterkamp G, Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schunkert H, Schwarz PE, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch K, Tonjes A, Tregouet DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Volker U, Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PI, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, Marz W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njolstad I, Oostra BA, Palmer CN, Pedersen NL, Perola M, Perusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O’Connell JR, Strachan DP, Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI, Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM, Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJ, Speliotes EK (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N, Lohman K, Johnson AD, Foster MC, Greenawalt DM, Griffin P, Ding J, Newman AB, Tylavsky F, Miljkovic I, Kritchevsky SB, Launer L, Garcia M, Eiriksdottir G, Carr JJ, Gudnason V, Harris TB, Cupples LA, Borecki IB (2012) Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 8:e1002695PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang T, Ma X, Peng D, Zhang R, Sun X, Chen M, Yan J, Wang S, Yan D, He Z, Jiang F, Bao Y, Hu C, Jia W (2016) Effects of obesity related genetic variations on visceral and subcutaneous fat distribution in a Chinese population. Sci Rep 6:20691PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Andersen MK, Sandholt CH (2015) Recent progress in the understanding of obesity: contributions of genome-wide association studies. Curr Obes Rep 4(4):401–410PubMedCrossRefGoogle Scholar
  21. 21.
    Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, Sha J, Pankow JS, Liu C, Irvin MR, Fornage M, Hidalgo B, Lin LA, Thibeault KS, Bressler J, Tsai MY, Grove ML, Hopkins PN, Boerwinkle E, Borecki IB, Ordovas JM, Levy D, Tiwari HK, Absher DM, Arnett DK (2015) Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obes (Silver Spring) 23(7):1493–1501CrossRefGoogle Scholar
  22. 22.
    Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34(4):782–812PubMedCrossRefGoogle Scholar
  23. 23.
    Wang B, Gao W, Li J, Yu C, Cao W, Lv J, Pang Z, Cong L, Wang H, Wu X, Liang L, Wu T, Li L (2016) Methylation loci associated with body mass index, waist circumference, and waist-to-hip ratio in Chinese adults: an epigenome-wide analysis. Lancet 388(Suppl 1):S21CrossRefGoogle Scholar
  24. 24.
    Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, Tsai PC, Ried JS, Zhang W, Yang Y, Tan S, Fiorito G, Franke L, Guarrera S, Kasela S, Kriebel J, Richmond RC, Adamo M, Afzal U, Ala-Korpela M, Albetti B, Ammerpohl O, Apperley JF, Beekman M, Bertazzi PA, Black SL, Blancher C, Bonder MJ, Brosch M, Carstensen-Kirberg M, de Craen AJ, de Lusignan S, Dehghan A, Elkalaawy M, Fischer K, Franco OH, Gaunt TR, Hampe J, Hashemi M, Isaacs A, Jenkinson A, Jha S, Kato N, Krogh V, Laffan M, Meisinger C, Meitinger T, Mok ZY, Motta V, Ng HK, Nikolakopoulou Z, Nteliopoulos G, Panico S, Pervjakova N, Prokisch H, Rathmann W, Roden M, Rota F, Rozario MA, Sandling JK, Schafmayer C, Schramm K, Siebert R, Slagboom PE, Soininen P, Stolk L, Strauch K, Tai ES, Tarantini L, Thorand B, Tigchelaar EF, Tumino R, Uitterlinden AG, van Duijn C, van Meurs JB, Vineis P, Wickremasinghe AR, Wijmenga C, Yang TP, Yuan W, Zhernakova A, Batterham RL, Smith GD, Deloukas P, Heijmans BT, Herder C, Hofman A, Lindgren CM, Milani L, van der Harst P, Peters A, Illig T, Relton CL, Waldenberger M, Järvelin MR, Bollati V, Soong R, Spector TD, Scott J, McCarthy MI, Elliott P, Bell JT, Matullo G, Gieger C, Kooner JS, Grallert H, Chambers JC (2017) Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541(7635):81–86PubMedCrossRefGoogle Scholar
  25. 25.
    Gaboon NEA (2011) Nutritional genomics and personalized diet. Egypt J Med Hum Genet 12:1–7CrossRefGoogle Scholar
  26. 26.
    Flowers MT, Ntambi JM (2008) Role of stearoyl-coenzyme a desaturase in regulating lipid metabolism. Curr Opin Lipidol 19:248–256PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Popeijus HE, Saris WH, Mensink RP (2008) Role of stearoyl-CoA desaturases in obesity and the metabolic syndrome. Int J Obes (Lond) 32:1076–1082CrossRefGoogle Scholar
  28. 28.
    Reynes B, Palou M, Palou A (2017) Gene expression modulation of lipid and central energetic metabolism related genes by high-fat diet intake in the main homeostatic tissues. Food Funct 8:629–650PubMedCrossRefGoogle Scholar
  29. 29.
    Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM (2007) Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 282:2483–2493PubMedCrossRefGoogle Scholar
  30. 30.
    Paniagua JA, Gallego de la Sacristana A, Romero I, Vidal-Puig A, Latre JM, Sanchez E, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F (2007) Monounsaturated fat-rich diet prevents central body fat distribution and decreases postprandial adiponectin expression induced by a carbohydrate-rich diet in insulin-resistant subjects. Diabetes Care 30:1717–1723PubMedCrossRefGoogle Scholar
  31. 31.
    Muhlhausler BS, Cook-Johnson R, James M, Miljkovic D, Duthoit E, Gibson R (2010) Opposing effects of omega-3 and omega-6 long chain polyunsaturated Fatty acids on the expression of lipogenic genes in omental and retroperitoneal adipose depots in the rat. J Nutr Metab 2010:927836-1–927836-9. doi: 10.1155/2010/927836 CrossRefGoogle Scholar
  32. 32.
    Garaulet M, Perez-Llamas F, Perez-Ayala M, Martinez P, de Medina FS, Tebar FJ, Zamora S (2001) Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr 74:585–591PubMedGoogle Scholar
  33. 33.
    Sabin MA, Crowne EC, Stewart CE, Hunt LP, Turner SJ, Welsh GI, Grohmann MJ, Holly JM, Shield JP (2007) Depot-specific effects of fatty acids on lipid accumulation in children’s adipocytes. Biochem Biophys Res Commun 361:356–361PubMedCrossRefGoogle Scholar
  34. 34.
    Ward KD, Sparrow D, Vokonas PS, Willett WC, Landsberg L, Weiss ST (1994) The relationships of abdominal obesity, hyperinsulinemia and saturated fat intake to serum lipid levels: the Normative Aging Study. Int J Obes Relat Metab Disord 18:137–144PubMedGoogle Scholar
  35. 35.
    Larson DE, Hunter GR, Williams MJ, Kekes-Szabo T, Nyikos I, Goran MI (1996) Dietary fat in relation to body fat and intraabdominal adipose tissue: a cross-sectional analysis. Am J Clin Nutr 64:677–684PubMedGoogle Scholar
  36. 36.
    Hariri N, Gougeon R, Thibault L (2010) A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content. Nutr Res 30:632–643PubMedCrossRefGoogle Scholar
  37. 37.
    Garaulet M, Hernandez-Morante JJ, Lujan J, Tebar FJ, Zamora S (2006) Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int J Obes (Lond) 30:899–905CrossRefGoogle Scholar
  38. 38.
    Silver HJ, Kang H, Keil CD, Muldowney JA 3rd, Kocalis H, Fazio S, Vaughan DE, Niswender KD (2014) Consuming a balanced high fat diet for 16 weeks improves body composition, inflammation and vascular function parameters in obese premenopausal women. Metabolism 63:562–573PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mumme K, Stonehouse W (2015) Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials. J Acad Nutr Diet 115:249–263PubMedCrossRefGoogle Scholar
  40. 40.
    Han J, Hamilton JA, Kirkland JL, Corkey BE, Guo W (2003) Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes Res 11:734–744PubMedCrossRefGoogle Scholar
  41. 41.
    Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K (2001) Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr 131:2853–2859PubMedGoogle Scholar
  42. 42.
    Kasai M, Nosaka N, Maki H, Negishi S, Aoyama T, Nakamura M, Suzuki Y, Tsuji H, Uto H, Okazaki M, Kondo K (2003) Effect of dietary medium- and long-chain triacylglycerols (MLCT) on accumulation of body fat in healthy humans. Asia Pac J Clin Nutr 12:151–160PubMedGoogle Scholar
  43. 43.
    Clegg ME (2010) Medium-chain triglycerides are advantageous in promoting weight loss although not beneficial to exercise performance. Int J Food Sci Nutr 61:653–679PubMedCrossRefGoogle Scholar
  44. 44.
    Rego Costa AC, Rosado EL, Soares-Mota M (2012) Influence of the dietary intake of medium chain triglycerides on body composition, energy expenditure and satiety: a systematic review. Nutr Hosp 27:103–108PubMedGoogle Scholar
  45. 45.
    Roynette CE, Rudkowska I, Nakhasi DK, Jones PJ (2008) Structured medium and long chain triglycerides show short-term increases in fat oxidation, but no changes in adiposity in men. Nutr Metab Cardiovasc Dis 18:298–305PubMedCrossRefGoogle Scholar
  46. 46.
    St-Onge MP, Bosarge A (2008) Weight-loss diet that includes consumption of medium-chain triacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am J Clin Nutr 87:621–626PubMedPubMedCentralGoogle Scholar
  47. 47.
    St-Onge MP, Bourque C, Jones PJ, Ross R, Parsons WE (2003) Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. Int J Obes Relat Metab Disord 27:95–102PubMedCrossRefGoogle Scholar
  48. 48.
    St-Onge MP, Jones PJ (2003) Greater rise in fat oxidation with medium-chain triglyceride consumption relative to long-chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue. Int J Obes Relat Metab Disord 27:1565–1571PubMedCrossRefGoogle Scholar
  49. 49.
    Nimptsch K, Berg-Beckhoff G, Linseisen J (2010) Effect of dietary fatty acid intake on prospective weight change in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. Public Health Nutr 13:1636–1646PubMedCrossRefGoogle Scholar
  50. 50.
    Moussavi N, Gavino V, Receveur O (2008) Could the quality of dietary fat, and not just its quantity, be related to risk of obesity? Obes (Silver Spring) 16(1):7–15CrossRefGoogle Scholar
  51. 51.
    Munro IA, Garg ML (2012) Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br J Nutr 108:1466–1474PubMedCrossRefGoogle Scholar
  52. 52.
    Muhlhausler BS, Ailhaud GP (2013) Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 20:56–61PubMedCrossRefGoogle Scholar
  53. 53.
    Summers LK, Fielding BA, Bradshaw HA, Ilic V, Beysen C, Clark ML, Moore NR, Frayn KN (2002) Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 45:369–377PubMedCrossRefGoogle Scholar
  54. 54.
    Cardel M, Lemas DJ, Jackson KH, Friedman JE, Fernandez JR (2015) Higher intake of PUFAs is associated with lower total and visceral adiposity and higher lean mass in a racially diverse sample of children. J Nutr 145:2146–2152PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kunesova M, Braunerova R, Hlavaty P, Tvrzicka E, Stankova B, Skrha J, Hilgertova J, Hill M, Kopecky J, Wagenknecht M, Hainer V, Matoulek M, Parizkova J, Zak A, Svacina S (2006) The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol Res 55:63–72PubMedGoogle Scholar
  56. 56.
    Crochemore IC, Souza AF, de Souza AC, Rosado EL (2012) omega-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity. Nutr Clin Pract 27:553–560PubMedCrossRefGoogle Scholar
  57. 57.
    Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130:2943–2948PubMedGoogle Scholar
  58. 58.
    Sneddon AA, Tsofliou F, Fyfe CL, Matheson I, Jackson DM, Horgan G, Winzell MS, Wahle KW, Ahren B, Williams LM (2008) Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obes (Silver Spring) 16:1019–1024CrossRefGoogle Scholar
  59. 59.
    Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, Berglund J, Pulkki K, Basu S, Uusitupa M, Rudling M, Arner P, Cederholm T, Ahlstrom H, Riserus U (2012) Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr 95:1003–1012PubMedCrossRefGoogle Scholar
  60. 60.
    Tapsell L, Batterham M, Huang XF, Tan SY, Teuss G, Charlton K, Oshea J, Warensjo E (2010) Short term effects of energy restriction and dietary fat sub-type on weight loss and disease risk factors. Nutr Metab Cardiovasc Dis 20:317–325PubMedCrossRefGoogle Scholar
  61. 61.
    Tan SY, Batterham M, Tapsell L (2011) Increased intake of dietary polyunsaturated fat does not promote whole body or preferential abdominal fat mass loss in overweight adults. Obes Facts 4:352–357PubMedCrossRefGoogle Scholar
  62. 62.
    Venturini D, Simao AN, Urbano MR, Dichi I (2015) Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome. Nutrition 31:834–840PubMedCrossRefGoogle Scholar
  63. 63.
    Potenza MV, Mechanick JI (2009) The metabolic syndrome: definition, global impact, and pathophysiology. Nutr Clin Pract 24:560–577PubMedCrossRefGoogle Scholar
  64. 64.
    Bergouignan A, Momken I, Schoeller DA, Simon C, Blanc S (2009) Metabolic fate of saturated and monounsaturated dietary fats: the Mediterranean diet revisited from epidemiological evidence to cellular mechanisms. Prog Lipid Res 48:128–147PubMedCrossRefGoogle Scholar
  65. 65.
    Pelkman CL, Fishell VK, Maddox DH, Pearson TA, Mauger DT, Kris-Etherton PM (2004) Effects of moderate-fat (from monounsaturated fat) and low-fat weight-loss diets on the serum lipid profile in overweight and obese men and women. Am J Clin Nutr 79:204–212PubMedGoogle Scholar
  66. 66.
    Bes-Rastrollo M, Sabate J, Gomez-Gracia E, Alonso A, Martinez JA, Martinez-Gonzalez MA (2007) Nut consumption and weight gain in a Mediterranean cohort: the SUN study. Obes (Silver Spring) 15:107–116CrossRefGoogle Scholar
  67. 67.
    Mendez MA, Popkin BM, Jakszyn P, Berenguer A, Tormo MJ, Sanchez MJ, Quiros JR, Pera G, Navarro C, Martinez C, Larranaga N, Dorronsoro M, Chirlaque MD, Barricarte A, Ardanaz E, Amiano P, Agudo A, Gonzalez CA (2006) Adherence to a Mediterranean diet is associated with reduced 3-year incidence of obesity. J Nutr 136:2934–2938PubMedGoogle Scholar
  68. 68.
    Brunerova L, Smejkalova V, Potockova J, Andel M (2007) A comparison of the influence of a high-fat diet enriched in monounsaturated fatty acids and conventional diet on weight loss and metabolic parameters in obese non-diabetic and Type 2 diabetic patients. Diabet Med 24:533–540PubMedCrossRefGoogle Scholar
  69. 69.
    Senanayake VK, Pu S, Jenkins DA, Lamarche B, Kris-Etherton PM, West SG, Fleming JA, Liu X, McCrea CE, Jones PJ (2014) Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT). Trials 15:136PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Austel A, Ranke C, Wagner N, Gorge J, Ellrott T (2015) Weight loss with a modified Mediterranean-type diet using fat modification: a randomized controlled trial. Eur J Clin Nutr 69:878–884PubMedCrossRefGoogle Scholar
  71. 71.
    Alvarez-Perez J, Sanchez-Villegas A, Diaz-Benitez EM, Ruano-Rodriguez C, Corella D, Martinez-Gonzalez MA, Estruch R, Salas-Salvado J, Serra-Majem L (2016) Influence of a Mediterranean dietary pattern on body fat distribution: results of the PREDIMED-Canarias Intervention Randomized Trial. J Am Coll Nutr 35:568–580PubMedCrossRefGoogle Scholar
  72. 72.
    Yannakoulia M, Aggelopoulou D, Skenderi K, Koinaki S, Yiannakouris N (2014) A Mediterranean-like breakfast affects energy intake and appetite-related feelings. Int J Food Sci Nutr 65:899–902PubMedCrossRefGoogle Scholar
  73. 73.
    Di Daniele N, Petramala L, Di Renzo L, Sarlo F, Della Rocca DG, Rizzo M, Fondacaro V, Iacopino L, Pepine CJ, De Lorenzo A (2013) Body composition changes and cardiometabolic benefits of a balanced Italian Mediterranean diet in obese patients with metabolic syndrome. Acta Diabetol 50:409–416PubMedCrossRefGoogle Scholar
  74. 74.
    Razquin C, Martinez JA, Martinez-Gonzalez MA, Mitjavila MT, Estruch R, Marti A (2009) A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur J Clin Nutr 63:1387–1393PubMedCrossRefGoogle Scholar
  75. 75.
    Berggren JR, Boyle KE, Chapman WH, Houmard JA (2008) Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab 294(4):E726–E732PubMedCrossRefGoogle Scholar
  76. 76.
    Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279(5):E1039–E1044PubMedGoogle Scholar
  77. 77.
    Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ (1985) Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol 2006 100(5):1467–1474Google Scholar
  78. 78.
    Cavaliere G, Trinchese G, Bergamo P, De Filippo C, Mattace Raso G, Gifuni G, Putti R, Moni BH, Canani RB, Meli R, Mollica MP (2016) Polyunsaturated fatty acids attenuate diet induced obesity and insulin resistance, modulating mitochondrial respiratory uncoupling in rat skeletal muscle. PLoS One 11(2):e0149033PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299(6):E1096–E1105PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Corcoran MP, Lamon-Fava S, Fielding RA (2007) Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am J Clin Nutr 85(3):662–677PubMedGoogle Scholar
  81. 81.
    Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, Nälsén C, Berglund L, Louheranta A, Rasmussen BM, Calvert GD, Maffetone A, Pedersen E, Gustafsson IB, Storlien LH (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia 44(3):312–319PubMedCrossRefGoogle Scholar
  82. 82.
    Tierney AC, McMonagle J, Shaw DI, Gulseth HL, Helal O, Saris WH, Paniagua JA, Gołąbek-Leszczyñska I, Defoort C, Williams CM, Karsltröm B, Vessby B, Dembinska-Kiec A, López-Miranda J, Blaak EE, Drevon CA, Gibney MJ, Lovegrove JA, Roche HM (2011) Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome–LIPGENE: a European randomized dietary intervention study. Int J Obes (Lond) 35(6):800–809CrossRefGoogle Scholar
  83. 83.
    Delarue J, LeFoll C, Corporeau C, Lucas D (2004) N-3 long chain polyunsaturated fatty acids: a nutritional tool to prevent insulin resistance associated to type 2 diabetes and obesity? Reprod Nutr Dev 44(3):289–299PubMedCrossRefGoogle Scholar
  84. 84.
    Soares MJ, Cummings SJ, Mamo JC, Kenrick M, Piers LS (2004) The acute effects of olive oil v. cream on postprandial thermogenesis and substrate oxidation in postmenopausal women. Br J Nutr 91:245–252PubMedCrossRefGoogle Scholar
  85. 85.
    Piers LS, Walker KZ, Stoney RM, Soares MJ, O’Dea K (2002) The influence of the type of dietary fat on postprandial fat oxidation rates: monounsaturated (olive oil) vs saturated fat (cream). Int J Obes Relat Metab Disord 26:814–821PubMedCrossRefGoogle Scholar
  86. 86.
    Kien CL, Bunn JY, Ugrasbul F (2005) Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am J Clin Nutr 82:320–326PubMedPubMedCentralGoogle Scholar
  87. 87.
    Jones PJ, Jew S, AbuMweis S (2008) The effect of dietary oleic, linoleic, and linolenic acids on fat oxidation and energy expenditure in healthy men. Metabolism 57:1198–1203PubMedCrossRefGoogle Scholar
  88. 88.
    Kien CL, Bunn JY, Stevens R, Bain J, Ikayeva O, Crain K, Koves TR, Muoio DM (2014) Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am J Clin Nutr 99:436–445PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lovejoy JC, Smith SR, Champagne CM, Most MM, Lefevre M, DeLany JP, Denkins YM, Rood JC, Veldhuis J, Bray GA (2002) Effects of diets enriched in saturated (palmitic), monounsaturated (oleic), or trans (elaidic) fatty acids on insulin sensitivity and substrate oxidation in healthy adults. Diabetes Care 25:1283–1288PubMedCrossRefGoogle Scholar
  90. 90.
    Casas-Agustench P, Lopez-Uriarte P, Bullo M, Ros E, Gomez-Flores A, Salas-Salvado J (2009) Acute effects of three high-fat meals with different fat saturations on energy expenditure, substrate oxidation and satiety. Clin Nutr 28:39–45PubMedCrossRefGoogle Scholar
  91. 91.
    Clevenger HC, Kozimor AL, Paton CM, Cooper JA (2014) Acute effect of dietary fatty acid composition on postprandial metabolism in women. Exp Physiol 99:1182–1190PubMedCrossRefGoogle Scholar
  92. 92.
    van Marken Lichtenbelt WD, Mensink RP, Westerterp KR (1997) The effect of fat composition of the diet on energy metabolism. Z Ernahrungswiss 36:303–305PubMedCrossRefGoogle Scholar
  93. 93.
    Rasmussen LG, Larsen TM, Mortensen PK, Due A, Astrup A (2007) Effect on 24-h energy expenditure of a moderate-fat diet high in monounsaturated fatty acids compared with that of a low-fat, carbohydrate-rich diet: a 6-mo controlled dietary intervention trial. Am J Clin Nutr 85:1014–1022PubMedGoogle Scholar
  94. 94.
    Maljaars J, Romeyn EA, Haddeman E, Peters HP, Masclee AA (2009) Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr 89:1019–1024PubMedCrossRefGoogle Scholar
  95. 95.
    Strik CM, Lithander FE, McGill AT, MacGibbon AK, McArdle BH, Poppitt SD (2010) No evidence of differential effects of SFA, MUFA or PUFA on post-ingestive satiety and energy intake: a randomised trial of fatty acid saturation. Nutr J 9:24PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lawton CL, Delargy HJ, Brockman J, Smith FC, Blundell JE (2000) The degree of saturation of fatty acids influences post-ingestive satiety. Br J Nutr 83:473–482PubMedGoogle Scholar
  97. 97.
    Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S (2014) Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int 2014:203425PubMedPubMedCentralGoogle Scholar
  98. 98.
    Simopoulos AP (2016) An increase in the omega-6/omega-3 Fatty acid ratio increases the risk for obesity. Nutrients 8:128PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kim J, Carlson ME, Kuchel GA, Newman JW, Watkins BA (2016) Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. Int J Obes (Lond) 40:129–137CrossRefGoogle Scholar
  100. 100.
    Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJ (2017) Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog Lipid Res ​67:1–15PubMedCrossRefGoogle Scholar
  101. 101.
    Nieters A, Becker N, Linseisen J (2002) Polymorphisms in candidate obesity genes and their interaction with dietary intake of n-6 polyunsaturated fatty acids affect obesity risk in a sub-sample of the EPIC-Heidelberg cohort. Eur J Nutr 41:210–221PubMedCrossRefGoogle Scholar
  102. 102.
    Larsen SC, Angquist L, Ostergaard JN, Ahluwalia TS, Vimaleswaran KS, Roswall N, Mortensen LM, Nielsen BM, Tjonneland A, Wareham NJ, Palli D, Masala G, Saris WH, van der AD, Boer JM, Feskens EJ, Boeing H, Jakobsen MU, Loos RJ, Sorensen TI, Overvad K (2016) Intake of total and subgroups of fat minimally affect the associations between selected single nucleotide polymorphisms in the PPARgamma pathway and changes in anthropometry among European adults from cohorts of the DiOGenes study. J Nutr 146:603–611PubMedCrossRefGoogle Scholar
  103. 103.
    Rakhshandehroo M, Knoch B, Muller M, Kersten S (2010) Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010Google Scholar
  104. 104.
    Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566PubMedCrossRefGoogle Scholar
  105. 105.
    Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170PubMedCrossRefGoogle Scholar
  106. 106.
    Larter CZ, Yeh MM, Cheng J, Williams J, Brown S, Dela Pena A, Bell-Anderson KS, Farrell GC (2008) Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation. J Gastroenterol Hepatol 23:267–275PubMedCrossRefGoogle Scholar
  107. 107.
    Shiomi Y, Yamauchi T, Iwabu M, Okada-Iwabu M, Nakayama R, Orikawa Y, Yoshioka Y, Tanaka K, Ueki K, Kadowaki T (2015) A novel peroxisome proliferator-activated receptor (PPAR)alpha agonist and PPARgamma antagonist, Z-551, ameliorates high-fat diet-induced obesity and metabolic disorders in mice. J Biol Chem 290:14567–14581PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jeong S, Yoon M (2009) Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice. Exp Mol Med 41:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y (2003) PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52:291–299PubMedCrossRefGoogle Scholar
  110. 110.
    Festuccia WT, Blanchard PG, Turcotte V, Laplante M, Sariahmetoglu M, Brindley DN, Deshaies Y (2009) Depot-specific effects of the PPARgamma agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J Lipid Res 50:1185–1194PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Luan J, Browne PO, Harding AH, Halsall DJ, O’Rahilly S, Chatterjee VK, Wareham NJ (2001) Evidence for gene–nutrient interaction at the PPARgamma locus. Diabetes 50:686–689PubMedCrossRefGoogle Scholar
  112. 112.
    Memisoglu A, Hu FB, Hankinson SE, Manson JE, De Vivo I, Willett WC, Hunter DJ (2003) Interaction between a peroxisome proliferator-activated receptor gamma gene polymorphism and dietary fat intake in relation to body mass. Hum Mol Genet 12:2923–2929PubMedCrossRefGoogle Scholar
  113. 113.
    Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40:439–452PubMedCrossRefGoogle Scholar
  116. 116.
    Vara Prasad SS, Jeya Kumar SS, Kumar PU, Qadri SS, Vajreswari A (2010) Dietary fatty acid composition alters 11beta-hydroxysteroid dehydrogenase type 1 gene expression in rat retroperitoneal white adipose tissue. Lipids Health Dis 9:111PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Clarke SD (2000) Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr 83(Suppl 1):S59–S66PubMedGoogle Scholar
  118. 118.
    Reilly JM, Thompson MP (2000) Dietary fatty acids up-regulate the expression of UCP2 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 277:541–545PubMedCrossRefGoogle Scholar
  119. 119.
    Clarke SD, Turini M, Jump DB, Abraham S, Reedy M (1998) Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation. Z Ernahrungswiss 37(Suppl 1):14–20PubMedGoogle Scholar
  120. 120.
    Mejia-Barradas CM, Del-Rio-Navarro BE, Dominguez-Lopez A, Campos-Rodriguez R, Martinez-Godinez M, Rojas-Hernandez S, Lara-Padilla E, Abarca-Rojano E, Miliar-Garcia A (2014) The consumption of n-3 polyunsaturated fatty acids differentially modulates gene expression of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents. Endocrine 45:98–105PubMedCrossRefGoogle Scholar
  121. 121.
    Naughton SS, Mathai ML, Hryciw DH, McAinch AJ (2016) Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat 125:90–99PubMedCrossRefGoogle Scholar
  122. 122.
    Meyer BJ, Mann NJ, Lewis JL, Milligan GC, Sinclair AJ, Howe PR (2003) Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 38:391–398PubMedCrossRefGoogle Scholar
  123. 123.
    Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Veck M, Tvrzicka E, Bryhn M, Kopecky J (2004) Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39:1177–1185PubMedCrossRefGoogle Scholar
  124. 124.
    Lands WE, Morris A, Libelt B (1990) Quantitative effects of dietary polyunsaturated fats on the composition of fatty acids in rat tissues. Lipids 25:505–516PubMedCrossRefGoogle Scholar
  125. 125.
    Bueno AA, Oyama LM, de Oliveira C, Pisani LP, Ribeiro EB, Silveira VL, Oller do Nascimento CM (2008) Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue. Pflugers Arch 455:701–709PubMedCrossRefGoogle Scholar
  126. 126.
    Yang ZH, Miyahara H, Iwasaki Y, Takeo J, Katayama M (2013) Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-Ay mice. Nutr Metab (Lond) 10:16CrossRefGoogle Scholar
  127. 127.
    Hernando Boigues JF, Mach N (2015) The effect of polyunsaturated fatty acids on obesity through epigenetic modifications. Endocrinol Nutr 62(7):338–349PubMedCrossRefGoogle Scholar
  128. 128.
    Ceccarelli V, Racanicchi S, Martelli MP, Nocentini G, Fettucciari K, Riccardi C, Marconi P, Di Nardo P, Grignani F, Binaglia L, Vecchini A (2011) Eicosapentaenoic acid demethylates a single CpG that mediates expression of tumor suppressor CCAAT/enhancer-binding protein delta in U937 leukemia cells. J Biol Chem 286(31):27092–27102PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Palmer DJ, Huang RC, Craig JM, Prescott SL (2014) Nutritional influences on epigenetic programming: asthma, allergy, and obesity. Immunol Allergy Clin N Am 34(4):825–837CrossRefGoogle Scholar
  130. 130.
    Voisin S, Almen MS, Moschonis G, Chrousos GP, Manios Y, Schioth HB (2015) Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet 23(5):654–662PubMedCrossRefGoogle Scholar
  131. 131.
    Hall E, Volkov P, Dayeh T, Bacos K, Ronn T, Nitert MD, Ling C (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Silva-Martinez GA, Rodriguez-Rios D, Alvarado-Caudillo Y, Vaquero A, Esteller M, Carmona FJ, Moran S, Nielsen FC, Wickström-Lindholm M, Wrobel K, Wrobel K, Barbosa-Sabanero G, Zaina S, Lund G (2016) Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics 11(5):321–334PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, Nilsson E, Risérus U, Ling C (2017) Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 105(4):991–1000PubMedCrossRefGoogle Scholar
  134. 134.
    Shen W, Wang C, Xia L, Fan C, Dong H, Deckelbaum RJ, Qi K (2014) Epigenetic modification of the leptin promoter in diet-induced obese mice and the effects of N-3 polyunsaturated fatty acids. Sci Rep 4:5282PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Corella D, Arnett DK, Tucker KL, Kabagambe EK, Tsai M, Parnell LD, Lai CQ, Lee YC, Warodomwichit D, Hopkins PN, Ordovas JM (2011) A high intake of saturated fatty acids strengthens the association between the fat mass and obesity-associated gene and BMI. J Nutr 141:2219–2225PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chouinard-Watkins R, Conway V, Minihane AM, Jackson KG, Lovegrove JA, Plourde M (2015) Interaction between BMI and APOE genotype is associated with changes in the plasma long-chain-PUFA response to a fish-oil supplement in healthy participants. Am J Clin Nutr 102:505–513PubMedCrossRefGoogle Scholar
  137. 137.
    Robitaille J, Brouillette C, Lemieux S, Perusse L, Gaudet D, Vohl MC (2004) Plasma concentrations of apolipoprotein B are modulated by a gene–diet interaction effect between the LFABP T94A polymorphism and dietary fat intake in French–Canadian men. Mol Genet Metab 82:296–303PubMedCrossRefGoogle Scholar
  138. 138.
    Ma Y, Tucker KL, Smith CE, Lee YC, Huang T, Richardson K, Parnell LD, Lai CQ, Young KL, Justice AE, Shao Y, North KE, Ordovas JM (2014) Lipoprotein lipase variants interact with polyunsaturated fatty acids for obesity traits in women: replication in two populations. Nutr Metab Cardiovasc Dis 24:1323–1329PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Smith CE, Arnett DK, Corella D, Tsai MY, Lai CQ, Parnell LD, Lee YC, Ordovas JM (2012) Perilipin polymorphism interacts with saturated fat and carbohydrates to modulate insulin resistance. Nutr Metab Cardiovasc Dis 22:449–455PubMedCrossRefGoogle Scholar
  140. 140.
    Garaulet M, Smith CE, Hernandez-Gonzalez T, Lee YC, Ordovas JM (2011) PPARgamma Pro12Ala interacts with fat intake for obesity and weight loss in a behavioural treatment based on the Mediterranean diet. Mol Nutr Food Res 55:1771–1779PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Phillips CM, Kesse-Guyot E, McManus R, Hercberg S, Lairon D, Planells R, Roche HM (2012) High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. J Nutr 142:824–831PubMedCrossRefGoogle Scholar
  142. 142.
    Wiklund P, Toss F, Weinehall L, Hallmans G, Franks PW, Nordstrom A, Nordstrom P (2008) Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women. J Clin Endocrinol Metab 93:4360–4366PubMedCrossRefGoogle Scholar
  143. 143.
    Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18PubMedCrossRefGoogle Scholar
  144. 144.
    Rothney MP, Catapano AL, Xia J, Wacker WK, Tidone C, Grigore L, Xia Y, Ergun DL (2013) Abdominal visceral fat measurement using dual-energy X-ray: association with cardiometabolic risk factors. Obes (Silver Spring) 21:1798–1802CrossRefGoogle Scholar
  145. 145.
    Snijder MB, Visser M, Dekker JM, Seidell JC, Fuerst T, Tylavsky F, Cauley J, Lang T, Nevitt M, Harris TB (2002) The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: a comparison with computed tomography and anthropometry. Int J Obes Relat Metab Disord 26:984–993PubMedCrossRefGoogle Scholar
  146. 146.
    Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, Ergun DL (2012) Dual-energy X-ray absorptiometry for quantification of visceral fat. Obes (Silver Spring) 20:1313–1318CrossRefGoogle Scholar
  147. 147.
    Miazgowski T, Krzyzanowska-Swiniarska B, Dziwura-Ogonowska J, Widecka K (2014) The associations between cardiometabolic risk factors and visceral fat measured by a new dual-energy X-ray absorptiometry-derived method in lean healthy Caucasian women. Endocrine 47:500–505PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, Tran KV, Straubhaar J, Nicoloro S, Czech MP, Thompson M, Perugini RA, Corvera S (2011) Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123:186–194PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Chaston TB, Dixon JB (2008) Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond) 32:619–628CrossRefGoogle Scholar
  150. 150.
    Caron-Jobin M, Mauvoisin D, Michaud A, Veilleux A, Noel S, Fortier MP, Julien P, Tchernof A, Mounier C (2012) Stearic acid content of abdominal adipose tissues in obese women. Nutr Diabetes 2:e23PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Davidge-Pitts C, Escande CJ, Conover CA (2014) Preferential expression of PAPPA in human preadipocytes from omental fat. J Endocrinol 222:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Lefebvre AM, Laville M, Vega N, Riou JP, van Gaal L, Auwerx J, Vidal H (1998) Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 47:98–103PubMedCrossRefGoogle Scholar
  153. 153.
    Guiu-Jurado E, Auguet T, Berlanga A, Aragones G, Aguilar C, Sabench F, Armengol S, Porras JA, Marti A, Jorba R, Hernandez M, del Castillo D, Richart C (2015) Downregulation of de novo Fatty acid synthesis in subcutaneous adipose tissue of moderately obese women. Int J Mol Sci 16:29911–29922PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ray H, Pinteur C, Frering V, Beylot M, Large V (2009) Depot-specific differences in perilipin and hormone-sensitive lipase expression in lean and obese. Lipids Health Dis 8:58PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Huang ZH, Espiritu DJ, Uy A, Holterman AX, Vitello J, Mazzone T (2011) Adipose tissue depot-specific differences in adipocyte apolipoprotein E expression. Metabolism 60:1692–1701PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, Kern W, Hillhouse EW, Lehnert H, Tan BK, Randeva HS (2010) Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151:3169–3180PubMedCrossRefGoogle Scholar
  157. 157.
    Raclot T, Oudart H (1999) Selectivity of fatty acids on lipid metabolism and gene expression. Proc Nutr Soc 58:633–646PubMedCrossRefGoogle Scholar
  158. 158.
    Robitaille J, Despres JP, Perusse L, Vohl MC (2003) The PPAR-gamma P12A polymorphism modulates the relationship between dietary fat intake and components of the metabolic syndrome: results from the Quebec Family Study. Clin Genet 63:109–116PubMedCrossRefGoogle Scholar
  159. 159.
    Rosado EL, Bressan J, Martinez JA, Marques-Lopes I (2010) Interactions of the PPARgamma2 polymorphism with fat intake affecting energy metabolism and nutritional outcomes in obese women. Ann Nutr Metab 57:242–250PubMedCrossRefGoogle Scholar
  160. 160.
    Franks PW, Jablonski KA, Delahanty L, Hanson RL, Kahn SE, Altshuler D, Knowler WC, Florez JC (2007) The Pro12Ala variant at the peroxisome proliferator-activated receptor gamma gene and change in obesity-related traits in the Diabetes Prevention Program. Diabetologia 50:2451–2460PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Rosado EL, Bressan J, Hernandez JA, Martins MF, Cecon PR (2006) Effect of diet and PPARgamma2 and beta2-adrenergic receptor genes on energy metabolism and body composition in obese women. Nutr Hosp 21:317–331PubMedGoogle Scholar
  162. 162.
    Razquin C, Martinez JA, Martinez-Gonzalez MA, Bes-Rastrollo M, Fernandez-Crehuet J, Marti A (2010) A 3-year intervention with a Mediterranean diet modified the association between the rs9939609 gene variant in FTO and body weight changes. Int J Obes (Lond) 34:266–272CrossRefGoogle Scholar
  163. 163.
    de Luis DA, Aller R, Izaola O, Conde R, Eiros Bouza JM (2013) Genetic variation in the beta 3-adrenoreceptor gene (Trp64Arg polymorphism) and its influence on anthropometric parameters and insulin resistance under a high monounsaturated versus a high polyunsaturated fat hypocaloric diet. Ann Nutr Metab 62:303–309PubMedCrossRefGoogle Scholar
  164. 164.
    De Luis DA, Aller R, Izaola O, Pacheco D (2015) Role of rs9939609 FTO gene variant in weight loss, insulin resistance and metabolic parameters after a high monounsaturated vs a high polyunsaturated fat hypocaloric diets. Nutr Hosp 32:175–181PubMedGoogle Scholar
  165. 165.
    Dominguez-Reyes T, Astudillo-Lopez CC, Salgado-Goytia L, Munoz-Valle JF, Salgado-Bernabe AB, Guzman-Guzman IP, Castro-Alarcon N, Moreno-Godinez ME, Parra-Rojas I (2015) Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects. Lipids Health Dis 14:106PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Warodomwichit D, Shen J, Arnett DK, Tsai MY, Kabagambe EK, Peacock JM, Hixson JE, Straka RJ, Province MA, An P, Lai CQ, Parnell LD, Borecki IB, Ordovas JM (2009) ADIPOQ polymorphisms, monounsaturated fatty acids, and obesity risk: the GOLDN study. Obes (Silver Spring) 17:510–517CrossRefGoogle Scholar
  167. 167.
    de Luis DA, Aller R, Izaola O, Bachiller R, Pacheco D (2014) Cardiovascular risk factors and adipocytokines levels after two hypocaloric diets with different fat distribution in obese subjects and rs6923761 gene variant of glucagon-like peptide 1 receptor. J Endocrinol Invest 37:853–859PubMedCrossRefGoogle Scholar
  168. 168.
    Garaulet M, Lee YC, Shen J, Parnell LD, Arnett DK, Tsai MY, Lai CQ, Ordovas JM (2009) CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids. Am J Clin Nutr 90:1466–1475PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    de Luis DA, Aller R, Gonzalez Sagrado M, Conde R, Izaola O, de la Fuente B (2013) Genetic variation in the cannabinoid receptor gene (CNR1) (G1359A polymorphism) and their influence on anthropometric parameters and metabolic parameters under a high monounsaturated vs. high polyunsaturated fat hypocaloric diets. J Nutr Biochem 24:1431–1435PubMedCrossRefGoogle Scholar
  170. 170.
    Ma XY, Qiu WQ, Smith CE, Parnell LD, Jiang ZY, Ordovas JM, Tucker KL, Lai CQ (2012) Association between BDNF rs6265 and obesity in the Boston Puerto Rican Health Study. J Obes 2012:102942PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Garaulet M, Smith CE, Gomez-Abellan P, Ordovas-Montanes M, Lee YC, Parnell LD, Arnett DK, Ordovas JM (2014) REV-ERB-ALPHA circadian gene variant associates with obesity in two independent populations: Mediterranean and North American. Mol Nutr Food Res 58:821–829PubMedCrossRefGoogle Scholar
  172. 172.
    Phillips CM, Goumidi L, Bertrais S, Field MR, Peloso GM, Shen J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM (2009) Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults. J Nutr 139:2011–2017PubMedCrossRefGoogle Scholar
  173. 173.
    Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September AV, Goedecke JH (2014) Interleukin-6 gene polymorphisms, dietary fat intake, obesity and serum lipid concentrations in black and white South African women. Nutrients 6:2436–2465PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Razquin C, Martinez JA, Martinez-Gonzalez MA, Fernandez-Crehuet J, Santos JM, Marti A (2010) A Mediterranean diet rich in virgin olive oil may reverse the effects of the -174G/C IL6 gene variant on 3-year body weight change. Mol Nutr Food Res 54(Suppl 1):S75–S82PubMedCrossRefGoogle Scholar
  175. 175.
    Joffe YT, van der Merwe L, Evans J, Collins M, Lambert EV, September A, Goedecke JH (2012) The tumor necrosis factor-alpha gene -238G>A polymorphism, dietary fat intake, obesity risk and serum lipid concentrations in black and white South African women. Eur J Clin Nutr 66:1295–1302PubMedCrossRefGoogle Scholar
  176. 176.
    Joffe YT, van der Merwe L, Carstens M, Collins M, Jennings C, Levitt NS, Lambert EV, Goedecke JH (2010) Tumor necrosis factor-alpha gene -308 G/A polymorphism modulates the relationship between dietary fat intake, serum lipids, and obesity risk in black South African women. J Nutr 140:901–907PubMedCrossRefGoogle Scholar
  177. 177.
    de Luis DA, Aller R, Izaola O, Gonzalez Sagrado M, Conde R (2013) Role of G308 promoter variant of tumor necrosis factor alpha gene on weight loss and metabolic parameters after a high monounsaturated versus a high polyunsaturated fat hypocaloric diets. Med Clin (Barc) 141:189–193CrossRefGoogle Scholar
  178. 178.
    Junyent M, Parnell LD, Lai CQ, Arnett DK, Tsai MY, Kabagambe EK, Straka RJ, Province M, An P, Smith CE, Lee YC, Borecki I, Ordovas JM (2010) ADAM17_i33708A> G polymorphism interacts with dietary n-6 polyunsaturated fatty acids to modulate obesity risk in the Genetics of Lipid Lowering Drugs and Diet Network study. Nutr Metab Cardiovasc Dis 20:698–705PubMedCrossRefGoogle Scholar
  179. 179.
    Corella D, Lai CQ, Demissie S, Cupples LA, Manning AK, Tucker KL, Ordovas JM (2007) APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study. J Mol Med (Berl) 85:119–128CrossRefGoogle Scholar
  180. 180.
    Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, Lai CQ, Parnell LD, Coltell O, Lee YC, Ordovas JM (2009) APOA2, dietary fat, and body mass index: replication of a gene–diet interaction in 3 independent populations. Arch Intern Med 169:1897–1906PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Smith CE, Tucker KL, Arnett DK, Noel SE, Corella D, Borecki IB, Feitosa MF, Aslibekyan S, Parnell LD, Lai CQ, Lee YC, Ordovas JM (2013) Apolipoprotein A2 polymorphism interacts with intakes of dairy foods to influence body weight in 2 US populations. J Nutr 143:1865–1871PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Basiri MG, Sotoudeh G, Alvandi E, Djalali M, Eshraghian MR, Noorshahi N, Koohdani F (2015) APOA2 -256T>C polymorphism interacts with saturated fatty acids intake to affect anthropometric and hormonal variables in type 2 diabetic patients. Genes Nutr 10:464PubMedCrossRefGoogle Scholar
  183. 183.
    Smith CE, Ordovas JM, Sanchez-Moreno C, Lee YC, Garaulet M (2012) Apolipoprotein A-II polymorphism: relationships to behavioural and hormonal mediators of obesity. Int J Obes (Lond) 36:130–136CrossRefGoogle Scholar
  184. 184.
    Corella D, Tai ES, Sorli JV, Chew SK, Coltell O, Sotos-Prieto M, Garcia-Rios A, Estruch R, Ordovas JM (2011) Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene–saturated fat interaction. Int J Obes (Lond) 35:666–675CrossRefGoogle Scholar
  185. 185.
    Rafiee M, Sotoudeh G, Djalali M, Alvandi E, Eshraghian M, Sojoudi F, Koohdani F (2016) Dietary omega-3 polyunsaturated fatty acid intake modulates impact of insertion/deletion polymorphism of ApoB gene on obesity risk in type 2 diabetic patients. Nutrition 32:1110–1115PubMedCrossRefGoogle Scholar
  186. 186.
    Smith CE, Tucker KL, Lee YC, Lai CQ, Parnell LD, Ordovas JM (2013) Low-density lipoprotein receptor-related protein 1 variant interacts with saturated fatty acids in puerto ricans. Obes (Silver Spring) 21:602–608CrossRefGoogle Scholar
  187. 187.
    Smith CE, Ngwa J, Tanaka T, Qi Q, Wojczynski MK, Lemaitre RN, Anderson JS, Manichaikul A, Mikkila V, van Rooij FJ, Ye Z, Bandinelli S, Frazier-Wood AC, Houston DK, Hu F, Langenberg C, McKeown NM, Mozaffarian D, North KE, Viikari J, Zillikens MC, Djousse L, Hofman A, Kahonen M, Kabagambe EK, Loos RJ, Saylor GB, Forouhi NG, Liu Y, Mukamal KJ, Chen YD, Tsai MY, Uitterlinden AG, Raitakari O, van Duijn CM, Arnett DK, Borecki IB, Cupples LA, Ferrucci L, Kritchevsky SB, Lehtimaki T, Qi L, Rotter JI, Siscovick DS, Wareham NJ, Witteman JC, Ordovas JM, Nettleton JA (2013) Lipoprotein receptor-related protein 1 variants and dietary fatty acids: meta-analysis of European origin and African American studies. Int J Obes (Lond) 37:1211–1220CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  1. 1.Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Richardson Centre for Functional Foods and NutraceuticalsUniversity of ManitobaWinnipegCanada

Personalised recommendations