Intake of up to 3 Eggs/Day Increases HDL Cholesterol and Plasma Choline While Plasma Trimethylamine-N-oxide is Unchanged in a Healthy Population

Abstract

Eggs are a source of cholesterol and choline and may impact plasma lipids and trimethylamine-N-oxide (TMAO) concentrations, which are biomarkers for cardiovascular disease (CVD) risk. Therefore, the effects of increasing egg intake (0, 1, 2, and 3 eggs/day) on these and other CVD risk biomarkers were evaluated in a young, healthy population. Thirty-eight subjects [19 men/19 women, 24.1 ± 2.2 years, body mass index (BMI) 24.3 ± 2.5 kg/m2] participated in this 14-week crossover intervention. Participants underwent a 2-week washout with no egg consumption, followed by intake of 1, 2, and 3 eggs/day for 4 weeks each. Anthropometric data, blood pressure (BP), dietary records, and plasma biomarkers (lipids, glucose, choline, and TMAO) were measured during each intervention phase. BMI, waist circumference, systolic BP, plasma glucose, and plasma triacylglycerol did not change throughout the intervention. Diastolic BP decreased with egg intake (P < 0.05). Compared to 0 eggs/day, intake of 1 egg/day increased HDL cholesterol (HDL-c) (P < 0.05), and decreased LDL cholesterol (LDL-c) (P < 0.05) and the LDL-c/HDL-c ratio (P < 0.01). With intake of 2–3 eggs/day, these changes were maintained. Plasma choline increased dose-dependently with egg intake (P < 0.0001) while fasting plasma TMAO was unchanged. These results indicate that in a healthy population, consuming up to 3 eggs/day results in an overall beneficial effect on biomarkers associated with CVD risk, as documented by increased HDL-c, a reduced LDL-c/HDL-c ratio, and increased plasma choline in combination with no change in plasma LDL-c or TMAO concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ACE:

Angiotensin-converting enzyme

BMI:

Body mass index

BP:

Blood pressure

CVD:

Cardiovascular disease

FMO:

Flavin monooxygenase

HDL-c:

HDL cholesterol

LDL-c:

LDL cholesterol

LC–MS/MS:

Liquid chromatography with tandem mass spectrometry

TC:

Total cholesterol

TAG:

Triacylglycerol

TMA:

Trimethylamine

TMAO:

Trimethylamine-N-oxide

WC:

Waist circumference

References

  1. 1.

    US Department of Health and Human Services; US Department of Agriculture. 2010–2015 Dietary guidelines for Americans. 7th edn, Washington, DC. December 2010

  2. 2.

    US Department of Health and Human Services; US Department of Agriculture. 2015-2020 Dietary Guidelines for Americans. 8th edn, Washington, DC. December 2015

  3. 3.

    Lee A, Griffin B (2006) Dietary cholesterol, eggs and coronary heart disease risk in perspective. Br Nutr Found Bull 31:21–27

    Article  Google Scholar 

  4. 4.

    Fernandez M, Andersen C (2015) Handbook of eggs in human function. 10.3920/978-90-8686-804-9_1

  5. 5.

    Hopkins N (1992) Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr 55:1060–1070

    CAS  PubMed  Google Scholar 

  6. 6.

    Guo J, Lovegrove JA, Cockcroft JR et al (2015) Egg consumption and cardiovascular disease events—evidence from the Caerphilly prospective cohort study. Proc Nutr Soc 74:E291. doi:10.1017/S0029665115003389

    Article  Google Scholar 

  7. 7.

    Scrafford CG, Tran NL, Barraj LM, Mink PJ (2011) Egg consumption and CHD and stroke mortality: a prospective study of US adults. Public Health Nutr 14:261–270. doi:10.1017/S1368980010001874

    Article  PubMed  Google Scholar 

  8. 8.

    Qureshi AI, Suri FK, Ahmed S et al (2007) Regular egg consumption does not increase the risk of stroke and cardiovascular diseases. Med Sci Monit 13(1):CR1–CR8. doi:10.3945/jn.109.114918

    PubMed  Google Scholar 

  9. 9.

    Nakamura Y, Iso H, Kita Y et al (2006) Egg consumption, serum total cholesterol concentrations and coronary heart disease incidence: Japan public health center-based prospective study. Br J Nutr 96:921–928. doi:10.1017/BJN20061937

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Yamaguchi N, Suruga K (2008) Triiodothyronine stimulates CMO1 gene expression in human intestinal Caco-2 BBe cells. Life Sci 82:789–796. doi:10.1016/j.lfs.2008.01.010

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hu FB, Stampfer MJ, Rimm EB et al (1999) A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA 281:1387–1394. doi:10.1001/jama.281.15.1387

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Shin JY, Xun P, Nakamura Y, He K (2013) Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. doi:10.3945/ajcn.112.051318

    Google Scholar 

  13. 13.

    Rong Y, Chen L, Zhu T et al (2013) Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. BMJ 346:e8539. doi:10.1136/bmj.e8539

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kritchevsky SB, Kritchevsky D (2000) Egg consumption and coronary heart disease: an epidemiologic overview. J Am Coll Nutr 19:549S–555S. doi:10.1080/07315724.2000.10718979

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Djoussé L, Gaziano JM (2008) Egg consumption in relation to cardiovascular disease and mortality: the Physician’s health study. Am J Clin Nutr 87:964–969. doi:10.1055/s-0029-1237430.Imprinting

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ballesteros MN, Valenzuela F, Robles AE et al (2015) One egg per day improves inflammation when compared to an oatmeal-based breakfast without increasing other cardiometabolic risk factors in diabetic patients. Nutrients 7:3449–3463. doi:10.3390/nu7053449

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Fuller NR, Caterson ID, Sainsbury A et al (2015) The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: the Diabetes and Egg (DIABEGG) study-a 3-mo randomized controlled trial. Am J Clin Nutr 101:705–713. doi:10.3945/ajcn.114.096925

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Mutungi G, Ratliff J, Puglisi M et al (2008) Dietary cholesterol from eggs increases plasma HDL cholesterol in overweight men consuming a carbohydrate-restricted diet. J Nutr 138:272–276

    CAS  PubMed  Google Scholar 

  19. 19.

    Blesso CN, Andersen CJ, Barona J et al (2013) Whole egg consumption improves lipoprotein profiles and insulin sensitivity to a greater extent than yolk-free egg substitute in individuals with metabolic syndrome. Metabolism 62:400–410. doi:10.1016/j.metabol.2012.08.014

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Blesso CN, Andersen CJ, Bolling BW, Fernandez ML (2012) Egg intake improves carotenoid status by increasing plasma HDL cholesterol in adults with metabolic syndrome. Food Funct 4:213–221. doi:10.1039/c2fo30154g

    Article  Google Scholar 

  21. 21.

    Andersen CJ, Fernandez ML (2013) Dietary approaches to improving atheroprotective HDL functions. Food Funct 4:1304–1313. doi:10.1039/c3fo60207a

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hazen SL, Brown JM (2014) Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide. Am J Clin Nutr 100:741–743. doi:10.3945/ajcn.114.094458

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. doi:10.1038/nature09922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Tang WHW, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. doi:10.1056/NEJMoa1109400

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. doi:10.1038/nm.3145.Intestinal

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mente A, Chalcraft K, Handan A et al (2015) The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol 31:1189–1194. doi:10.1016/j.cjca.2015.06.016

    Article  PubMed  Google Scholar 

  27. 27.

    Cho CE, Taesuwan S, Malysheva OV et al (2016) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 3:1–12. doi:10.1002/mnfr.201600324

    Google Scholar 

  28. 28.

    Miller CA, Corbin KD, da Costa K-A et al (2014) Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr. doi:10.3945/ajcn.114.087692

    Google Scholar 

  29. 29.

    West AA, Shih Y, Wang W et al (2014) Egg n-3 fatty acid composition modulates biomarkers of choline metabolism in free-living lacto-ovo-vegetarian women of reproductive age. J Acad Nutr Diet 114:1594–1600. doi:10.1016/j.jand.2014.02.012

    Article  PubMed  Google Scholar 

  30. 30.

    Herron KL, Vega-Lopez S, Conde K et al (2003) Men classified as hypo- or hyperresponders to dietary cholesterol feeding exhibit differences in lipoprotein metabolism. J Nutr 133:1036–1042

    CAS  PubMed  Google Scholar 

  31. 31.

    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502. doi:10.1177/107424840501000106

    CAS  PubMed  Google Scholar 

  32. 32.

    Holm P, Ueland P, Kvalheim G, Lien E (2003) Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem 49:286–294

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Yan J, Wang W, Gregory J et al (2011) MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline. Am J Clin Nutr 93:348–355

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Yan J, Jiang X, West A et al (2012) Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr 95:1060–1071

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Frazao E (1999) America’s eating habits: changes and consequences. US Department of Agriculture, Economic Research Service, Food and Rural Economics Division, Washington, DC

  36. 36.

    USDA (2016) National nutrient database for standard reference release 28—egg, whole, raw, fresh

  37. 37.

    Applegate E (2000) Introduction: nutritional and functional roles of eggs in the diet. J Am Coll Nutr 19:495S–498S. doi:10.1080/07315724.2000.10718971

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Patterson KY, Bhagwat SA, Williams JR et al (2008) USDA Database for the choline content of common foods—release two, pp 1–37

  39. 39.

    Yetley EA (2008) Assessing the vitamin D status of the US population 1–4. Am J Clin Nutr 88:558S–564S

    CAS  PubMed  Google Scholar 

  40. 40.

    Dawson-Hughes B, Josse R (2004) Vitamin D status in North America. International Osteoporosis Foundation, pp 5–8. https://www.iofbonehealth.org/sites/default/files/PDFs/Vitamin_D_North_America.pdf

  41. 41.

    Kulie T, Groff A, Redmer J, Hounshell J (2009) Vitamin D: an evidence-based review. J Am Board Fam Med 22:698–706. doi:10.3122/jabfm.2009.06.090037

    Article  PubMed  Google Scholar 

  42. 42.

    Zhang R, Naughton DP (2010) Vitamin D in health and disease: current perspectives. Nutr J 9:1–13

    Article  Google Scholar 

  43. 43.

    Finglas PM (2000) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Trends Food Sci Technol. doi:10.1016/S0924-2244(01)00010-3

    Google Scholar 

  44. 44.

    Yoshikawa M, Fujita H, Matoba N, Takenaka Y (2000) Bioactive peptides derived from food proteins preventing lifestyle-related diseases. BioFactors 12:143–146

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wang YF, Yancy WS Jr., Yu D et al (2008) The relationship between dietary protein intake and blood pressure: results from the PREMIER study. J Hum Hypertens 22:745–754. doi:10.1038/jhh.2008.64

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Teunissen-Beekman KFM, Dopheide J, Geleijnse JM et al (2012) Protein supplementation lowers blood pressure in overweight adults: effect of dietary proteins on blood pressure (PROPRES), a randomized trial. Am J Clin Nutr 95:966–971. doi:10.3945/ajcn.111.029116

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Teunissen-Beekman KFM, Dopheide J, Geleijnse JM et al (2015) Dietary proteins improve endothelial function under fasting conditions but not in the postprandial state, with no effects on markers of low-grade inflammation. Br J Nutr 114:1819–1828. doi:10.1017/S0007114515003530

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Majumder K, Wu J (2009) Angiotensin i converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of. J Agric Food Chem 57:471–477

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Miguel M, Recio I, Gomez-Ruiz J et al (2004) Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 7:1914–1920

    Article  Google Scholar 

  50. 50.

    Fernandez ML (2010) Effects of eggs on plasma lipoproteins in healthy populations. Food Funct 1:156–160. doi:10.1039/c0fo00088d

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Gordon DJ, Probstfield JL, Garrison RJ et al (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8–15. doi:10.1161/01.CIR.79.1.8

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    DiMarco DM, Norris GH, Millar CL et al (2017) Intake of up to 3 eggs per day is associated with changes in HDL function and increased plasma antioxidants in healthy, young adults. J Nutr. doi:10.3945/jn.116.241877

  53. 53.

    Manninen V, Tenkanen L, Koskinen P et al (1992) Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki heart study. Implications for treatment. Circulation 85:37–45. doi:10.1161/01.CIR.85.1.37

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Fox J, Betzing H, Lekim D (1979) Pharmacokinetics of orally ingested phosphatidylcholine. Nutr Brain 5:95–108

    CAS  Google Scholar 

  55. 55.

    Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults Steven. Annu Rev Nutr 26:229–250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mai V, Ukhanova M, Baer DJ (2010) Understanding the extent and sources of variation in gut microbiota studies; a prerequisite for establishing associations with disease. Diversity 2:1085–1096. doi:10.3390/d2091085

    Article  Google Scholar 

  57. 57.

    Konstantinova SV, Tell GS, Vollset SE et al (2008) Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr 138:914–920

    CAS  PubMed  Google Scholar 

  58. 58.

    Rajaie S, Esmaillzadeh A (2011) Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA Atheroscler 7:78–86

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wang Z, Tang WHW, Buffa JA et al (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. doi:10.1093/eurheartj/ehu002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Dalmeijer GW, Olthof MR, Verhoef P et al (2008) Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur J Clin Nutr 62:386–394. doi:10.1038/sj.ejcn.1602725

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Chiuve SE, Giovannucci EL, Hankinson SE et al (2007) The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr 86:1073–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Gossell-Williams M, Fletcher H, McFarlane-Anderson N et al (2005) Dietary intake of choline and plasma choline concentrations in pregnant women in Jamaica. West Indian Med J 54:355–359

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Adamczyk M, Brashear RJ, Mattingly PG (2006) Choline concentration in normal blood donor and cardiac troponin-positive plasma samples. Clin Chem 52:2121–2123. doi:10.1373/clinchem.2006.075697

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an award to MLF from the Esperance Family Foundation and a grant to DMD from the Egg Nutrition Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Luz Fernandez.

Ethics declarations

Conflict of interest

DMD, AM, and MLF have received funding from the Egg Nutrition Center. All other authors declare no conflicts of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

DiMarco, D.M., Missimer, A., Murillo, A.G. et al. Intake of up to 3 Eggs/Day Increases HDL Cholesterol and Plasma Choline While Plasma Trimethylamine-N-oxide is Unchanged in a Healthy Population. Lipids 52, 255–263 (2017). https://doi.org/10.1007/s11745-017-4230-9

Download citation

Keywords

  • Eggs
  • Cholesterol
  • HDL
  • LDL
  • TMAO
  • Choline