Advertisement

Lipids

, Volume 52, Issue 3, pp 255–263 | Cite as

Intake of up to 3 Eggs/Day Increases HDL Cholesterol and Plasma Choline While Plasma Trimethylamine-N-oxide is Unchanged in a Healthy Population

  • Diana M. DiMarco
  • Amanda Missimer
  • Ana Gabriela Murillo
  • Bruno S. Lemos
  • Olga V. Malysheva
  • Marie A. Caudill
  • Christopher N. Blesso
  • Maria Luz FernandezEmail author
Original Article

Abstract

Eggs are a source of cholesterol and choline and may impact plasma lipids and trimethylamine-N-oxide (TMAO) concentrations, which are biomarkers for cardiovascular disease (CVD) risk. Therefore, the effects of increasing egg intake (0, 1, 2, and 3 eggs/day) on these and other CVD risk biomarkers were evaluated in a young, healthy population. Thirty-eight subjects [19 men/19 women, 24.1 ± 2.2 years, body mass index (BMI) 24.3 ± 2.5 kg/m2] participated in this 14-week crossover intervention. Participants underwent a 2-week washout with no egg consumption, followed by intake of 1, 2, and 3 eggs/day for 4 weeks each. Anthropometric data, blood pressure (BP), dietary records, and plasma biomarkers (lipids, glucose, choline, and TMAO) were measured during each intervention phase. BMI, waist circumference, systolic BP, plasma glucose, and plasma triacylglycerol did not change throughout the intervention. Diastolic BP decreased with egg intake (P < 0.05). Compared to 0 eggs/day, intake of 1 egg/day increased HDL cholesterol (HDL-c) (P < 0.05), and decreased LDL cholesterol (LDL-c) (P < 0.05) and the LDL-c/HDL-c ratio (P < 0.01). With intake of 2–3 eggs/day, these changes were maintained. Plasma choline increased dose-dependently with egg intake (P < 0.0001) while fasting plasma TMAO was unchanged. These results indicate that in a healthy population, consuming up to 3 eggs/day results in an overall beneficial effect on biomarkers associated with CVD risk, as documented by increased HDL-c, a reduced LDL-c/HDL-c ratio, and increased plasma choline in combination with no change in plasma LDL-c or TMAO concentrations.

Keywords

Eggs Cholesterol HDL LDL TMAO Choline 

Abbreviations

ACE

Angiotensin-converting enzyme

BMI

Body mass index

BP

Blood pressure

CVD

Cardiovascular disease

FMO

Flavin monooxygenase

HDL-c

HDL cholesterol

LDL-c

LDL cholesterol

LC–MS/MS

Liquid chromatography with tandem mass spectrometry

TC

Total cholesterol

TAG

Triacylglycerol

TMA

Trimethylamine

TMAO

Trimethylamine-N-oxide

WC

Waist circumference

Notes

Acknowledgements

This work was supported by an award to MLF from the Esperance Family Foundation and a grant to DMD from the Egg Nutrition Center.

Compliance with Ethical Standards

Conflict of interest

DMD, AM, and MLF have received funding from the Egg Nutrition Center. All other authors declare no conflicts of interest.

References

  1. 1.
    US Department of Health and Human Services; US Department of Agriculture. 2010–2015 Dietary guidelines for Americans. 7th edn, Washington, DC. December 2010Google Scholar
  2. 2.
    US Department of Health and Human Services; US Department of Agriculture. 2015-2020 Dietary Guidelines for Americans. 8th edn, Washington, DC. December 2015Google Scholar
  3. 3.
    Lee A, Griffin B (2006) Dietary cholesterol, eggs and coronary heart disease risk in perspective. Br Nutr Found Bull 31:21–27CrossRefGoogle Scholar
  4. 4.
    Fernandez M, Andersen C (2015) Handbook of eggs in human function.  10.3920/978-90-8686-804-9_1
  5. 5.
    Hopkins N (1992) Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr 55:1060–1070PubMedGoogle Scholar
  6. 6.
    Guo J, Lovegrove JA, Cockcroft JR et al (2015) Egg consumption and cardiovascular disease events—evidence from the Caerphilly prospective cohort study. Proc Nutr Soc 74:E291. doi: 10.1017/S0029665115003389 CrossRefGoogle Scholar
  7. 7.
    Scrafford CG, Tran NL, Barraj LM, Mink PJ (2011) Egg consumption and CHD and stroke mortality: a prospective study of US adults. Public Health Nutr 14:261–270. doi: 10.1017/S1368980010001874 CrossRefPubMedGoogle Scholar
  8. 8.
    Qureshi AI, Suri FK, Ahmed S et al (2007) Regular egg consumption does not increase the risk of stroke and cardiovascular diseases. Med Sci Monit 13(1):CR1–CR8. doi: 10.3945/jn.109.114918 PubMedGoogle Scholar
  9. 9.
    Nakamura Y, Iso H, Kita Y et al (2006) Egg consumption, serum total cholesterol concentrations and coronary heart disease incidence: Japan public health center-based prospective study. Br J Nutr 96:921–928. doi: 10.1017/BJN20061937 CrossRefPubMedGoogle Scholar
  10. 10.
    Yamaguchi N, Suruga K (2008) Triiodothyronine stimulates CMO1 gene expression in human intestinal Caco-2 BBe cells. Life Sci 82:789–796. doi: 10.1016/j.lfs.2008.01.010 CrossRefPubMedGoogle Scholar
  11. 11.
    Hu FB, Stampfer MJ, Rimm EB et al (1999) A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA 281:1387–1394. doi: 10.1001/jama.281.15.1387 CrossRefPubMedGoogle Scholar
  12. 12.
    Shin JY, Xun P, Nakamura Y, He K (2013) Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. doi: 10.3945/ajcn.112.051318 Google Scholar
  13. 13.
    Rong Y, Chen L, Zhu T et al (2013) Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. BMJ 346:e8539. doi: 10.1136/bmj.e8539 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kritchevsky SB, Kritchevsky D (2000) Egg consumption and coronary heart disease: an epidemiologic overview. J Am Coll Nutr 19:549S–555S. doi: 10.1080/07315724.2000.10718979 CrossRefPubMedGoogle Scholar
  15. 15.
    Djoussé L, Gaziano JM (2008) Egg consumption in relation to cardiovascular disease and mortality: the Physician’s health study. Am J Clin Nutr 87:964–969. doi: 10.1055/s-0029-1237430.Imprinting PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ballesteros MN, Valenzuela F, Robles AE et al (2015) One egg per day improves inflammation when compared to an oatmeal-based breakfast without increasing other cardiometabolic risk factors in diabetic patients. Nutrients 7:3449–3463. doi: 10.3390/nu7053449 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fuller NR, Caterson ID, Sainsbury A et al (2015) The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: the Diabetes and Egg (DIABEGG) study-a 3-mo randomized controlled trial. Am J Clin Nutr 101:705–713. doi: 10.3945/ajcn.114.096925 CrossRefPubMedGoogle Scholar
  18. 18.
    Mutungi G, Ratliff J, Puglisi M et al (2008) Dietary cholesterol from eggs increases plasma HDL cholesterol in overweight men consuming a carbohydrate-restricted diet. J Nutr 138:272–276PubMedGoogle Scholar
  19. 19.
    Blesso CN, Andersen CJ, Barona J et al (2013) Whole egg consumption improves lipoprotein profiles and insulin sensitivity to a greater extent than yolk-free egg substitute in individuals with metabolic syndrome. Metabolism 62:400–410. doi: 10.1016/j.metabol.2012.08.014 CrossRefPubMedGoogle Scholar
  20. 20.
    Blesso CN, Andersen CJ, Bolling BW, Fernandez ML (2012) Egg intake improves carotenoid status by increasing plasma HDL cholesterol in adults with metabolic syndrome. Food Funct 4:213–221. doi: 10.1039/c2fo30154g CrossRefGoogle Scholar
  21. 21.
    Andersen CJ, Fernandez ML (2013) Dietary approaches to improving atheroprotective HDL functions. Food Funct 4:1304–1313. doi: 10.1039/c3fo60207a CrossRefPubMedGoogle Scholar
  22. 22.
    Hazen SL, Brown JM (2014) Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide. Am J Clin Nutr 100:741–743. doi: 10.3945/ajcn.114.094458 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. doi: 10.1038/nature09922 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tang WHW, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. doi: 10.1056/NEJMoa1109400 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. doi: 10.1038/nm.3145.Intestinal CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mente A, Chalcraft K, Handan A et al (2015) The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol 31:1189–1194. doi: 10.1016/j.cjca.2015.06.016 CrossRefPubMedGoogle Scholar
  27. 27.
    Cho CE, Taesuwan S, Malysheva OV et al (2016) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 3:1–12. doi: 10.1002/mnfr.201600324 Google Scholar
  28. 28.
    Miller CA, Corbin KD, da Costa K-A et al (2014) Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr. doi: 10.3945/ajcn.114.087692 Google Scholar
  29. 29.
    West AA, Shih Y, Wang W et al (2014) Egg n-3 fatty acid composition modulates biomarkers of choline metabolism in free-living lacto-ovo-vegetarian women of reproductive age. J Acad Nutr Diet 114:1594–1600. doi: 10.1016/j.jand.2014.02.012 CrossRefPubMedGoogle Scholar
  30. 30.
    Herron KL, Vega-Lopez S, Conde K et al (2003) Men classified as hypo- or hyperresponders to dietary cholesterol feeding exhibit differences in lipoprotein metabolism. J Nutr 133:1036–1042PubMedGoogle Scholar
  31. 31.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502. doi: 10.1177/107424840501000106 PubMedGoogle Scholar
  32. 32.
    Holm P, Ueland P, Kvalheim G, Lien E (2003) Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem 49:286–294CrossRefPubMedGoogle Scholar
  33. 33.
    Yan J, Wang W, Gregory J et al (2011) MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline. Am J Clin Nutr 93:348–355CrossRefPubMedGoogle Scholar
  34. 34.
    Yan J, Jiang X, West A et al (2012) Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr 95:1060–1071CrossRefPubMedGoogle Scholar
  35. 35.
    Frazao E (1999) America’s eating habits: changes and consequences. US Department of Agriculture, Economic Research Service, Food and Rural Economics Division, Washington, DCGoogle Scholar
  36. 36.
    USDA (2016) National nutrient database for standard reference release 28—egg, whole, raw, freshGoogle Scholar
  37. 37.
    Applegate E (2000) Introduction: nutritional and functional roles of eggs in the diet. J Am Coll Nutr 19:495S–498S. doi: 10.1080/07315724.2000.10718971 CrossRefPubMedGoogle Scholar
  38. 38.
    Patterson KY, Bhagwat SA, Williams JR et al (2008) USDA Database for the choline content of common foods—release two, pp 1–37Google Scholar
  39. 39.
    Yetley EA (2008) Assessing the vitamin D status of the US population 1–4. Am J Clin Nutr 88:558S–564SPubMedGoogle Scholar
  40. 40.
    Dawson-Hughes B, Josse R (2004) Vitamin D status in North America. International Osteoporosis Foundation, pp 5–8. https://www.iofbonehealth.org/sites/default/files/PDFs/Vitamin_D_North_America.pdf
  41. 41.
    Kulie T, Groff A, Redmer J, Hounshell J (2009) Vitamin D: an evidence-based review. J Am Board Fam Med 22:698–706. doi: 10.3122/jabfm.2009.06.090037 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang R, Naughton DP (2010) Vitamin D in health and disease: current perspectives. Nutr J 9:1–13CrossRefGoogle Scholar
  43. 43.
    Finglas PM (2000) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Trends Food Sci Technol. doi: 10.1016/S0924-2244(01)00010-3 Google Scholar
  44. 44.
    Yoshikawa M, Fujita H, Matoba N, Takenaka Y (2000) Bioactive peptides derived from food proteins preventing lifestyle-related diseases. BioFactors 12:143–146CrossRefPubMedGoogle Scholar
  45. 45.
    Wang YF, Yancy WS Jr., Yu D et al (2008) The relationship between dietary protein intake and blood pressure: results from the PREMIER study. J Hum Hypertens 22:745–754. doi: 10.1038/jhh.2008.64 CrossRefPubMedGoogle Scholar
  46. 46.
    Teunissen-Beekman KFM, Dopheide J, Geleijnse JM et al (2012) Protein supplementation lowers blood pressure in overweight adults: effect of dietary proteins on blood pressure (PROPRES), a randomized trial. Am J Clin Nutr 95:966–971. doi: 10.3945/ajcn.111.029116 CrossRefPubMedGoogle Scholar
  47. 47.
    Teunissen-Beekman KFM, Dopheide J, Geleijnse JM et al (2015) Dietary proteins improve endothelial function under fasting conditions but not in the postprandial state, with no effects on markers of low-grade inflammation. Br J Nutr 114:1819–1828. doi: 10.1017/S0007114515003530 CrossRefPubMedGoogle Scholar
  48. 48.
    Majumder K, Wu J (2009) Angiotensin i converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of. J Agric Food Chem 57:471–477CrossRefPubMedGoogle Scholar
  49. 49.
    Miguel M, Recio I, Gomez-Ruiz J et al (2004) Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 7:1914–1920CrossRefGoogle Scholar
  50. 50.
    Fernandez ML (2010) Effects of eggs on plasma lipoproteins in healthy populations. Food Funct 1:156–160. doi: 10.1039/c0fo00088d CrossRefPubMedGoogle Scholar
  51. 51.
    Gordon DJ, Probstfield JL, Garrison RJ et al (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79:8–15. doi: 10.1161/01.CIR.79.1.8 CrossRefPubMedGoogle Scholar
  52. 52.
    DiMarco DM, Norris GH, Millar CL et al (2017) Intake of up to 3 eggs per day is associated with changes in HDL function and increased plasma antioxidants in healthy, young adults. J Nutr. doi: 10.3945/jn.116.241877
  53. 53.
    Manninen V, Tenkanen L, Koskinen P et al (1992) Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki heart study. Implications for treatment. Circulation 85:37–45. doi: 10.1161/01.CIR.85.1.37 CrossRefPubMedGoogle Scholar
  54. 54.
    Fox J, Betzing H, Lekim D (1979) Pharmacokinetics of orally ingested phosphatidylcholine. Nutr Brain 5:95–108Google Scholar
  55. 55.
    Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults Steven. Annu Rev Nutr 26:229–250CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mai V, Ukhanova M, Baer DJ (2010) Understanding the extent and sources of variation in gut microbiota studies; a prerequisite for establishing associations with disease. Diversity 2:1085–1096. doi: 10.3390/d2091085 CrossRefGoogle Scholar
  57. 57.
    Konstantinova SV, Tell GS, Vollset SE et al (2008) Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr 138:914–920PubMedGoogle Scholar
  58. 58.
    Rajaie S, Esmaillzadeh A (2011) Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA Atheroscler 7:78–86PubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang Z, Tang WHW, Buffa JA et al (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. doi: 10.1093/eurheartj/ehu002 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dalmeijer GW, Olthof MR, Verhoef P et al (2008) Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur J Clin Nutr 62:386–394. doi: 10.1038/sj.ejcn.1602725 CrossRefPubMedGoogle Scholar
  61. 61.
    Chiuve SE, Giovannucci EL, Hankinson SE et al (2007) The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr 86:1073–1081PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gossell-Williams M, Fletcher H, McFarlane-Anderson N et al (2005) Dietary intake of choline and plasma choline concentrations in pregnant women in Jamaica. West Indian Med J 54:355–359CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Adamczyk M, Brashear RJ, Mattingly PG (2006) Choline concentration in normal blood donor and cardiac troponin-positive plasma samples. Clin Chem 52:2121–2123. doi: 10.1373/clinchem.2006.075697 CrossRefGoogle Scholar

Copyright information

© AOCS 2017

Authors and Affiliations

  • Diana M. DiMarco
    • 1
  • Amanda Missimer
    • 1
  • Ana Gabriela Murillo
    • 1
  • Bruno S. Lemos
    • 1
  • Olga V. Malysheva
    • 2
  • Marie A. Caudill
    • 2
  • Christopher N. Blesso
    • 1
  • Maria Luz Fernandez
    • 1
    Email author
  1. 1.Department of Nutritional SciencesUniversity of ConnecticutStorrsUSA
  2. 2.Division of Nutritional SciencesCornell UniversityIthacaUSA

Personalised recommendations