Skip to main content
Log in

Fall Composition of Storage Lipids is Associated with the Overwintering Strategy of Daphnia

  • Original Article
  • Published:
Lipids

Abstract

Diapause, which occurs through the production of dormant eggs, is a strategy used by some zooplankton to avoid winter months of persistent low temperatures and low food availability. However, reports of active zooplankton under the ice indicate that other strategies also exist. This study was aimed at evaluating whether the composition of storage lipids in the fall differs between diapausing and active overwintering Daphnia. We assessed the quantity of storage lipids and fatty acid (FA) composition of Daphnia species, along with FA content of seston, in six boreal, alpine and subarctic lakes at the onset of winter, and evaluated the association between storage lipids and Daphnia overwintering strategy. We found that active overwintering Daphnia had >55% body fat and the highest FA concentrations. Polyunsaturated FA, especially stearidonic acid (18:4n-3; SDA) and high ratios of n-3:n-6, were preferentially retained to a greater extent in active overwintering Daphnia than in those that entered diapause. Daphnia FA composition was independent of that of the seston diet, indicating that Daphnia adjusted their storage lipids according to the physiological requirements of a given overwintering strategy. The occurrence of an active overwintering strategy has consequences for zooplankton community structure, and can have important implications for the transfer of high-quality energy at higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FA:

Fatty acid(s)

FAME:

Fatty acid methyl esters

EPA:

Eicosapentaenoic acid, 20:5n-3

MUFA:

Monounsaturated fatty acid(s)

PUFA:

Polyunsaturated fatty acid(s)

SDA:

Stearidonic acid, 18:4n-3

SFA:

Saturated fatty acid(s)

References

  1. Thackeray SJ, Henrys PA, Jones ID, Feuchtmayr H (2012) Eight decades of phenological change for a freshwater cladoceran: what are the consequences of our definition of seasonal timing? Freshw Biol 57:345–359. doi:10.1111/j.1365-2427.2011.02614.x

    Article  Google Scholar 

  2. Chen C, Folt C (1996) Consequences of fall warming for zooplankton overwintering success. Limnol Oceanogr 41:1077–1086

    Article  Google Scholar 

  3. Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology (Jena) 104:313–326. doi:10.1078/0944-2006-00037

    Article  CAS  Google Scholar 

  4. Lampert W, Lampert KP, Larsson P (2010) Coexisting overwintering strategies in Daphnia pulex: a test of genetic differences and growth responses. Limnol Oceanogr 55:1893–1900. doi:10.4319/lo.2010.55.5.1893

    Article  Google Scholar 

  5. Larsson P, Wathne I (2006) Swim or rest during the winter—what is best for an alpine daphnid? Arch für Hydrobiol 167:265–280. doi:10.1127/0003-9136/2006/0167-0265

    Article  Google Scholar 

  6. Slusarczyk M (2009) Extended lifespan traded for diapause in Daphnia. Freshw Biol 54:2252–2262. doi:10.1111/j.1365-2427.2009.02256.x

    Article  Google Scholar 

  7. Rautio M, Mariash H, Forsström L (2011) Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnol Oceanogr 56:1513–1524. doi:10.4319/lo.2011.56.4.1513

    Article  CAS  Google Scholar 

  8. Schneider T, Grosbois G, Vincent WF, Rautio M (2016) Carotenoid accumulation in copepods is related to lipid metabolism and reproduction rather than to UV-protection. Limnol Ocean. doi:10.1002/lno.10283

    Google Scholar 

  9. Carvalho GR, Hughes RN, Animal S (1983) The effect of food availability, female culture-density and photoperiod on ephippia production in Daphnia magna Straus (Crustacea: Cladocera). Freshw Biol 13:37–46. doi:10.1111/j.1365-2427.1983.tb00655.x

    Article  Google Scholar 

  10. Griffiths D, Kirkwood RC (1995) Seasonal variation in growth, mortality and fat stores of roach and perch in Lough Neagh, Northern Ireland. J Fish Biol 47:537–554

    Article  Google Scholar 

  11. Hagen W, Van Vleet E, Kattner G (1996) Seasonal lipid storage as overwintering strategy of Antarctic krill. Mar Ecol Prog Ser 134:85–89. doi:10.3354/meps134085

    Article  CAS  Google Scholar 

  12. Tessier AJ, Goulden CE (1982) Estimating Food Limitation in Cladoceran Populations. Limnol Oceanogr 27:707–717

    Article  Google Scholar 

  13. Reznick DN, Braun B (1987) Fat cycling in the mosquitofish (Gambusia affinis): fat storage as a reproductive adaptation. Oecologia 73:401–413. doi:10.1007/BF00385257

    Article  Google Scholar 

  14. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  15. van der Meeren T, Olsen RE, Hamre K, Fyhn HJ (2008) Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274:375–397. doi:10.1016/j.aquaculture.2007.11.041

    Article  Google Scholar 

  16. Hiltunen M, Strandberg U, Keinänen M et al (2014) Distinctive lipid composition of the copepod Limnocalanus macrurus with a high abundance of polyunsaturated fatty acids. Lipids 919–932. doi:10.1007/s11745-014-3933-4

  17. Kattner G, Hagen W, Lee RF et al (2007) Perspectives on marine zooplankton lipids. Can J Fish Aquat Sci 64:1628–1639. doi:10.1139/F07-122

    Article  CAS  Google Scholar 

  18. Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids Aquat Ecosyst. Springer, New York, pp 1–24

  19. Persson J, Vrede T (2006) Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw Biol 51:887–900. doi:10.1111/j.1365-2427.2006.01540.x

    Article  CAS  Google Scholar 

  20. Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77. doi:10.1038/47469

    Article  PubMed  Google Scholar 

  21. Yang XW, Dick TA (1994) Arctic char (Salvelinus Alpinus) and rainbow trout (Oncorhynchus Mykiss) differ in their growth and lipid metabolism in response to dietary polyunsaturated fatty acids. Can J Fish Aquat Sci 51:1391–1400

    Article  CAS  Google Scholar 

  22. Burns CW, Brett MT, Schallenberg M (2011) A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshw Biol 56:889–903. doi:10.1111/j.1365-2427.2010.02534.x

    Article  Google Scholar 

  23. Taipale SJ, Kainz MJ, Brett MT (2011) Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos 120:1674–1682. doi:10.1111/j.1600-0706.2011.19415.x

    Article  Google Scholar 

  24. Eloranta AP, Mariash HL, Rautio M, Power M (2013) Lipid-rich zooplankton subsidise the winter diet of benthivorous Arctic charr (Salvelinus alpinus) in a subarctic lake. Freshw Biol 58:2541–2554. doi:10.1111/fwb.12231

    Article  Google Scholar 

  25. Hampton SE, Moore MV, Ozersky T et al (2015) Heating up a cold subject: prospects for under-ice plankton research in lakes. J Plankton Res 0:1–8. doi:10.1093/plankt/fbv002

    Google Scholar 

  26. Dufresne F, Hebert PDN (1995) Polyploidy and clonal diversity in an arctic cladoceran. Heredity (Edinb) 75:45–53

    Article  Google Scholar 

  27. Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. Methods 59:81–96

    Google Scholar 

  28. Heissernberger M, Watzke J, Kainz MJ (2010) Effect of nutrition on fatty acid profiles of riverine, lacustine, and aquaculture-raised salmonids of pre-alpine habitats. Hydrobiology 650:234–254

    Google Scholar 

  29. Fairclough DV, Clarke KR, Valesini FJ, Potter IC (2008) Habitat partitioning by five congeneric and abundant Choerodon species (Labridae) in a large subtropical marine embayment. Estuarine Coast Shelf Sci 77:446–456. doi:10.1016/j.ecss.2007.10.004

    Article  Google Scholar 

  30. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  31. Ahlgren G, Vrede T, Geodkoop W (2009) Fatty acid ratios in freshwater fish, zooplankton and zoobenthos. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids Aquat Ecosyst. Springer, New York, pp 147–178

  32. Hessen DO, Leu E (2006) Trophic transfer and trophic modification of fatty acids in high Arctic lakes. Freshw Biol 51:1987–1998. doi:10.1111/j.1365-2427.2006.01619.x

    Article  CAS  Google Scholar 

  33. Brett MT, Mu C, Ballantyne AP et al (2006) Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr 51:2428–2437

    Article  CAS  Google Scholar 

  34. Galloway AWE, Taipale SJ, Hiltunen M et al (2014) Diet-specific biomarkers show that high-quality phytoplankton fuels herbivorous zooplankton in large boreal lakes. Freshw Biol 59:1902–1915. doi:10.1111/fwb.12394

    Article  Google Scholar 

  35. Sarma SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333. doi:10.1007/s10750-004-3247-2

    Article  Google Scholar 

  36. Cáceres CE, Tessier AJ (2004) To sink or swim: variable diapause strategies among Daphnia species. Limnol Oceanogr 49:1333–1340. doi:10.4319/lo.2004.49.4_part_2.1333

    Article  Google Scholar 

  37. de Senerpont Domis LN, Mooij WM, Hülsmann S et al (2007) Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton–algae interactions? Oecologia 150:682–698. doi:10.1007/s00442-006-0549-2

    Article  PubMed  Google Scholar 

  38. Demott W, Müller-Navarra D (1997) The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshw Biol 38:649–664. doi:10.1046/j.1365-2427.1997.00222.x

    Article  CAS  Google Scholar 

  39. Von Elert E (2004) Food quality constraints in Daphnia: interspecific differences in the response to the absence of a long chain polyunsaturated fatty acid in the food source. Hydrobiologia 526:187–196. doi:10.1023/B:HYDR.0000041604.01529.00

    Article  Google Scholar 

  40. Patalas K (1990) Diversity of zooplankton communities in Canadian lakes as a function of climate. Verhanlungen des Int verein für Limnol 24:360–368

    Google Scholar 

  41. Forsström L, Sorvari S, Rautio M et al (2007) Changes in physical and chemical limnology and plankton during the spring melt period in a Subarctic Lake. Int Rev Hydrobiol 92:301–325. doi:10.1002/iroh.200610928

    Article  Google Scholar 

  42. Roiha T, Laurion I, Rautio M (2015) Carbon dynamics in highly heterotrophic subarctic thaw ponds. Biogeosciences 12:7223–7237. doi:10.5194/bg-12-7223-2015

    Article  Google Scholar 

  43. Farkas T, Herodek S (1964) The effect of environmental temperature on the fatty acid composition of crustacean plankton. J Lipid Res 5:369–373

    CAS  PubMed  Google Scholar 

  44. Dufresne F, Hebert PDN (1998) Temperature-related differences in life-history characteristics between diploid and polyploid clones of the Daphnia pulex complex 1. Ecoscience 5:433–437

    Article  Google Scholar 

  45. Gliwicz M, Slusarczyk A, Slusarczyk M (2001) Life history synchronization in a long-lifespan single-cohort Daphnia population in a fishless alpine lake. Oecologia 128:368–378. doi:10.1007/s004420100673

    Article  CAS  PubMed  Google Scholar 

  46. Tessier AJ, Henry L, Goulden CE, Durand MW (1983) Starvation in Daphnia: energy reserves and reproductive allocation. Limnol Oceanogr 28:667–676

    Article  Google Scholar 

  47. Hartwich M, Martin-Creuzburg D, Wacker A (2013) Seasonal changes in the accumulation of polyunsaturated fatty acids in zooplankton. J Plankton Res 35:121–134. doi:10.1093/plankt/fbs078

    Article  CAS  Google Scholar 

  48. Lampert W, Fleckner W, Rai H, Taylor BE (1986) A study zooplankton: on the phytoplankton control by grazing spring phase. Limnol Oceanogr 31:478–490

    Article  Google Scholar 

  49. Dupuis AP, Hann BJ (2009) Climate change, diapause termination and zooplankton population dynamics: an experimental and modelling approach. Freshw Biol 54:221–235. doi:10.1111/j.1365-2427.2008.02103.x

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Kilpisjärvi and Simoncouche biological stations for logistical support. We thank Martin Kainz and Jorge Watzke at the Wasserkluster Lunz for technical support during FA analysis, and two anonymous reviewers for their constructive comments that improved the paper. Core funding was provided by the Academy of Finland with Grants 19205 and 140775 to MR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. Mariash.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariash, H.L., Cusson, M. & Rautio, M. Fall Composition of Storage Lipids is Associated with the Overwintering Strategy of Daphnia . Lipids 52, 83–91 (2017). https://doi.org/10.1007/s11745-016-4219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4219-9

Keywords

Navigation