Skip to main content

Continuous Gradient Temperature Raman Spectroscopy of Oleic and Linoleic Acids from −100 to 50 °C


We analyzed the unsaturated fatty acids oleic (OA, 18:1n-9) and linoleic (LA, 18:2n-3), and a 3:1 LA:OA mixture from −100 to 50 °C with continuous gradient temperature Raman spectroscopy (GTRS). The 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed rapid, complete assignment of solid, liquid, and transition state vibrational modes. For OA, large spectral and line width changes occurred in the solid state γ to α transition near −4 °C, and the melt (13 °C) over a range of only 1 °C. For LA, major intensity reductions from 200 to 1750 cm−1 and some peak shifts marked one solid state phase transition at −50 °C. A second solid state transition (−33 °C) had minor spectral changes. Large spectral and line width changes occurred at the melt transition (−7 °C) over a narrow temperature range. For both molecules, melting initiates at the diene structure, then progresses towards the ends. In the 3:1 LA:OA mixture, some less intense and lower frequencies present in the individual lipids are weaker or absent. For example, modes assignable to C8 rocking, C9H–C10H wagging, C10H–C11H wagging, and CH3 rocking are present in OA but absent in LA:OA. Our data quantify the concept of lipid premelting and identify the flexible structures within OA and LA, which have characteristic vibrational modes beginning at cryogenic temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



Charge-coupled device


Differential scanning calorimetry


Fatty acid


Polyunsaturated fatty acid


Long chain polyunsaturated fatty acid


Gradient temperature Raman spectroscopy


High temperature




Linoleic acid

LN2 :

Liquid nitrogen


Low temperature


Mid temperature


Oleic acid


  1. Olsen EF, Rukke E-O, Flåtten A, Isaksson T (2007) Quantitative determination of saturated, monounsaturated, and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci 76:628–634

    CAS  Article  PubMed  Google Scholar 

  2. Herrero AM (2008) Raman spectroscopy for monitoring protein structure in muscle food systems. Crit Rev Food Sci Nutr 58:512–523

    Article  Google Scholar 

  3. Yang D, Ying Y (2011) Applications of Raman spectroscopy in agricultural products and food analysis: a review. Appl Spectrosc Rev 46:539–560

    Article  Google Scholar 

  4. Shende C, Gift A, Inscore F, Maksymiuk P, Farquharson S (2004) Inspection of pesticide residues on food by surface-enhanced Raman spectroscopy. Proc Soc Photo-Opt Eng 5271:28–34

    CAS  Google Scholar 

  5. Qin J, Chao K, Kim MS (2010) Raman chemical imaging system for food safety and quality inspection. Trans Am Soc Agric Biol Eng. 53:1873–1882

    CAS  Google Scholar 

  6. Rodrigues M, Weersink RA, Whelan WM (2010) Assessment of thermal coagulation in ex vivo tissues using Raman spectroscopy. J Biomed Opt 15:e068001

  7. Fitter J (2005) Structural and dynamical features contributing to thermostability in a-amylases. Cell Mol Life Sci 62:1925–1937

  8. Butterwick JA, Loria JP, Astrof NS, Kroenke CD, Cole R, Rance M, Palmer AG III, Rance M, Palmer AG III (2004) Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes. J Mol Biol 2004(339):855–871

    Article  Google Scholar 

  9. Carvalho FA, Martins IC, Santos NC (2013) Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality. Arch Biochem Biophys 531:116–127

    CAS  Article  PubMed  Google Scholar 

  10. Razvi A, Scholtz M (2006) Lessons in stability from thermophilic proteins. Protein Sci 15:1569–1578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Morgan AA, Rubenstein E (2013) Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS One 8:e53785

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Wriggers W, Chakravarty S, Jennings PA (2005) Control of protein functional dynamics by peptide linkers. Pept Sci 80:736–746

    CAS  Article  Google Scholar 

  13. Unger M, Chaturvedi D, Mishra S, Tandon P, Siesler HW (2013) Two-dimensional correlation analysis of temperature-dependent FT-IR spectra of oleic acid. Spectrosc Lett 46:21–27

    CAS  Article  Google Scholar 

  14. Engert C, Materny A, Kiefer W (1992) Temperature-dependent Raman spectra of polydiacetylene single crystals excited in near infrared. Chem Phys Lett 198:395–399

    CAS  Article  Google Scholar 

  15. Unger M, Sato H, Ozarki Y, Fischer D, Siesler HW (2013) Temperature-dependent fourier transform infrared spectroscopy and Raman mapping spectroscopy of phase-separation in a poly(3-hydroxybutyrate)-poly(l-lactic acid) blend. Appl Spectrosc 67:141–148

    CAS  Article  PubMed  Google Scholar 

  16. Silva RX, Paschoal CWA, Almeida RM, Carvalho-Castro M Jr, Ayala AP, Auletta JT, Lufaso MW (2013) Temperature-dependent Raman spectra of Bi2Sn2O7 ceramics. Vib Spectrosc 64:172–177

    CAS  Article  Google Scholar 

  17. Carvalho-Castro M Jr, Firmino E, Carvalho V, Paraguassu W, Ayala AP, Snyder FC, Lufaso MW, Paschoal CWA (2009) Temperature-dependent Raman spectra of Ba2BiSbO6 ceramics. J Raman Spectrosc 40:1205–1210

    Article  Google Scholar 

  18. Pi F, Kaneko F, Shinzawa H, Suzuki M, Iwahashi M, Ozaki Y (2011) Temperature dependence of structure and dynamic properties of oleic acid γ and α phases studied by FTIR spectroscopy. Bull Chem Soc Japan 84:403–412

    CAS  Article  Google Scholar 

  19. Pi F, Kaneko F, Iwahashi M, Suzuki M, Ozaki Y (2011) Solid-state low temperature → middle temperature phase transition of linoleic acid studied by FTIR spectroscopy. J Phys Chem B 115:6289–6295

    CAS  Article  PubMed  Google Scholar 

  20. Tandon P, Förster G, Neubert R, Wartewig S (2000) Phase transitions in oleic acid as studied by X-ray diffraction and FT-Raman spectroscopy. J Mol Struct 524:201–215

    CAS  Article  Google Scholar 

  21. Schmidt WF, Hapeman CJ, Rice C, McConnell LL, Mookherji S, Nguyen JK, Qin J, Lee H, Chao K, Kim MS (2014) Temperature dependent Raman spectroscopic evidence of and molecular mechanism for thermal transfer between β-endosulfan and α-endosulfan. J Agric Food Chem 62:2023–2030

    CAS  Article  PubMed  Google Scholar 

  22. Schmidt WF, Broadhurst CL, Qin J, Lee H, Nguyen JK, Chao K, Hapeman CJ, Shelton DR, Kim MS (2015) Continuous temperature-dependent Raman spectroscopy of melamine and structural analog detection in milk powder. Appl Spectrosc 69:398–406

    CAS  Article  PubMed  Google Scholar 

  23. Schmidt WF, Kim MS, Nguyen JK, Qin J, Chao K, Broadhurst CL, Shelton DR (2015) Continous gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides. Vib Spectrosc 80:59–65

    CAS  Article  Google Scholar 

  24. Broadhurst CL, Schmidt WF, Kim MS, Nguyen JK, Qin J, Chao K, Bauchan GL, Shelton DR (2016) Continuous gradient temperature Raman spectroscopy of n-6DPA and DHA from −100 to 20 °C. Chem Phys Lipids 200:1–10

    CAS  Article  PubMed  Google Scholar 

  25. Beattie JR, Bell SEJ, Moss BW (2004) A critical evaluation of Raman spectroscopy for the analysis of lipids: fatty acid methyl esters. Lipids 39:407–419

    CAS  Article  PubMed  Google Scholar 

  26. Mishra S, Chaturvedi D, Kumar N, Tandon P, Siesler HW (2010) An ab initio and DFT study of structure and vibrational spectra of γ form of oleic acid: comparison to experimental data. Chem Phys Lipids 163:207–217

    CAS  Article  PubMed  Google Scholar 

  27. Brozek-Pluska B, Kopec M, Surmacki J, Abramczy H (2015) Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies. Analyst 140:2134–2143

    CAS  Article  PubMed  Google Scholar 

  28. Kim Y, Strauss HL, Snyder RG (1988) Raman evidence for premelting in the α and β phases of oleic acid. J Phys Chem 92:5080–5082

    CAS  Article  Google Scholar 

  29. Ueno S, Miyazaki A, Yano J, Furukawa Y, Suzuki M, Sato K (2000) Polymorphism of linoleic acid (cis-9, cis-12-octadecadienoic acid) and α-linoleic acid (cis-9, cis-12, cis-15-octadecatrienoic acid). Chem Phys Lipids 107:169–178

    CAS  Article  PubMed  Google Scholar 

  30. Kobayashi M, Kaneko F, Sato K, Suzuki M (1986) Vibrational spectroscopic study on polymorphism and order-disorder phase transition in oleic acid. J Phys Chem 90:6371–6378

    CAS  Article  Google Scholar 

  31. Lawson EE, Anigbogu ANC, Williams AC, Barry BW, Edwards HGM (1998) Thermally induced molecular disorder in human stratumcorneum lipids compared with a model phospholipid system; FT-Raman spectroscopy. Spectrochimica Acta Part A 54:543–558

    Article  Google Scholar 

  32. Beattie JR, Bell SE, Borggaard C, Fearon AM, Moss BW (2007) Classification of adipose tissue species using Raman spectroscopy. Lipids 42:679–685

    CAS  Article  PubMed  Google Scholar 

  33. Motoyama M, Ando M, Sasaki K, Hamaguchi HO (2010) Differentiation of animal fats from different origins: use of polymorphic features detected by Raman spectroscopy. Appl Spectrosc 64:1244–1250

    CAS  Article  PubMed  Google Scholar 

  34. Abrahamsson S, Ryderstedt-Nahringbauer I (1962) The crystal structure of the low-melting form of oleic acid. Acta Crystallogr 15:1261–1268

    CAS  Article  Google Scholar 

  35. Schmidt WF, Mookherji S, Crawford MA (2009) Unit cell volume and liquid phase immiscibility in oleate-stearate lipid mixtures. Chem Phys Lipids 158:10–15

    CAS  Article  PubMed  Google Scholar 

  36. Schmidt WF, Mookherji S, Mitchell AD, Crawford MA (2012) Lipid composition in miscible and immiscible phases. In: Innocenti A (ed) Stoichiometry and research-the importance of quantity in biomedicine. In-Tech Publishers, Florence, pp 135–146

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. Leigh Broadhurst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 599 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Broadhurst, C.L., Schmidt, W.F., Kim, M.S. et al. Continuous Gradient Temperature Raman Spectroscopy of Oleic and Linoleic Acids from −100 to 50 °C. Lipids 51, 1289–1302 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Gradient temperature Raman spectroscopy
  • Oleic acid
  • Linoleic acid
  • Polyunsaturated fatty acids
  • Raman spectroscopy