Skip to main content

Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption

Abstract

Oil from the marine copepod, Calanus finmarchicus, which contains >86 % of fatty acids present as wax esters, is a novel source of n-3 fatty acids for human consumption. In a randomized, two-period crossover study, 18 healthy adults consumed 8 capsules providing 4 g of Calanus® Oil supplying a total of 260 mg EPA and 156 mg DHA primarily as wax esters, or 1 capsule of Lovaza® providing 465 mg EPA and 375 mg DHA as ethyl esters, each with an EPA- and DHA-free breakfast. Plasma EPA and DHA were measured over a 72 h period (t = 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h). The positive incremental area under the curve over the 72 h test period (iAUC0-72 h) for both EPA and DHA was significantly different from zero (p < 0.0001) in both test conditions, with similar findings for the iAUC0–24 h and iAUC0–48 h, indicating the fatty acids were absorbed. There was no difference in the plasma iAUC0–72 h for EPA + DHA, or DHA individually, in response to Calanus Oil vs the ethyl ester condition; however, the iAUC0–48 h and iAUC0–72 h for plasma EPA in response to Calanus Oil were both significantly increased relative to the ethyl ester condition (iAUC0–48 h: 381 ± 31 vs 259 ± 39 μg*h/mL, p = 0.026; iAUC0-72 h: 514 ± 47 vs 313 ± 49 μg*h/mL, p = 0.009). These data demonstrate a novel wax ester rich marine oil is a suitable alternative source of EPA and DHA for human consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

HDL-C:

High-density lipoprotein cholesterol

iAUC:

Incremental area under the curve

LDL-C:

Low-density lipoprotein cholesterol

n-3 PUFA:

Omega-3 polyunsaturated fatty acids

C max :

Maximal concentration

non-HDL-C:

Non-high-density lipoprotein cholesterol

SDA:

Stearidonic acid

TAG:

Triacylglycerol(s)

TC:

Total cholesterol

T max :

Time to maximal concentration

References

  1. 1.

    Gigliotti JC, Davenport MP, Beamer SK, Tou JC, Jaczynski J (2011) Extraction and characterisation of lipids from Antarctic krill (Euphausia superba). Food Chem 125:1028–1036

    CAS  Article  Google Scholar 

  2. 2.

    Ghasemifard S, Turchini GM, Sinclair AJ (2014) Omega-3 long chain fatty acid “bioavailability”: a review of evidence and methodological considerations. Prog Lipid Res 56:92–108

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Salem N Jr, Kuratko CN (2014) A reexamination of krill oil bioavailability studies. Lipids Health Dis 13:137

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Schuchardt JP, Hahn A (2013) Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 89:1–8

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Yurko-Mauro K, Kralovec J, Bailey-Hall E, Smeberg V, Stark JG, Salem N Jr (2015) Similar eicosapentaenoic acid and docosahexaenoic acid plasma levels achieved with fish oil or krill oil in a randomized double-blind four-week bioavailability study. Lipids Health Dis 14:99

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Cook CM, Hallaraker H, Saebo PC, Innis SM, Kelley KM, Sanoshy KD, Berger A, and Maki KC (2016) Bioavailability of long chain omega-3 polyunsaturated fatty acids from phospholipid-rich herring roe oil in men and women with mildly elevated triacylglycerols. Prostaglandins Leukot Essent Fatty Acids 111:17–24

  7. 7.

    Melle W, Ellertsen B, Skjoldal HR (2004) Zooplankton: the link to higher trophic levels. In: Skjoldal HR (ed) The Norwegian sea ecosystem. Tapir Academic Press, Trondheim

    Google Scholar 

  8. 8.

    Hargrove JL, Greenspan P, Hartle DK (2004) Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp Biol Med (Maywood) 229:215–226

    CAS  Google Scholar 

  9. 9.

    Place AR (1992) Comparative aspects of lipid digestion and absorption: physiological correlates of wax ester digestion. Am J Physiol 263:R464–R471

    CAS  PubMed  Google Scholar 

  10. 10.

    Human energy requirements: report of a joint FAO/WHO/UNU Expert Consultation (2005) Food Nutr Bull 26:166

  11. 11.

    Myers GL, Cooper GR, Winn CL, Smith SJ (1989) The centers for disease control-national heart, lung and blood institute lipid standardization program. an approach to accurate and precise lipid measurements. Clin Lab Med 9:105–135

    CAS  PubMed  Google Scholar 

  12. 12.

    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  13. 13.

    Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  14. 14.

    Levene H (1960) Robust tests for the equality of variance. In: Olkin I (ed) Contributions to probability and statistics: essays in honor of Harold Hotelling, 1st edn. Stanford University Press, Palo Alto, pp 278–292

    Google Scholar 

  15. 15.

    Bledsoe GE, Bledsoe CD, Rasco B (2003) Caviars and fish roe products. Crit Rev Food Sci Nutr 43:317–356

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    De Koning AJ (2005) Phospholipids of marine origin : the orange roughy (Hoplostethus atlanticus). S Afr J Sci 101:414–416

    Google Scholar 

  17. 17.

    Ling KH, Nichols PD, But PP (2009) Fish-induced keriorrhea. Adv Food Nutr Res 57:1–52

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Savary P (1971) The action of pure pig pancreatic lipase upon esters of long-chain fatty acids and short-chain primary alcohols. Biochim Biophys Acta 248:149–155

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lee RF, Patton JS (1989) Alcohol and waxes. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils. CRC Press, Boca Raton

    Google Scholar 

  20. 20.

    Gorreta F, Bernasconi R, Galliani G, Salmona M, Tacconi MT, Bianchi R (2002) Wax esters of n-3 polyunsaturated fatty acids: a new stable formulation as a potential food supplement. 1—digestion and absorption in rats. Lebensm-Wiss und Technol 35:458–465

    CAS  Article  Google Scholar 

  21. 21.

    Eilertsen KE, Maehre HK, Jensen IJ, Devold H, Olsen JO, Lie RK, Brox J, Berg V, Elvevoll EO, Osterud B (2012) A wax ester and astaxanthin-rich extract from the marine copepod Calanus finmarchicus attenuates atherogenesis in female apolipoprotein E-deficient mice. J Nutr 142:508–512

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hoper AC, Salma W, Khalid AM, Hafstad AD, Sollie SJ, Raa J, Larsen TS, Aasum E (2013) Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br J Nutr 110:2186–2193

    Article  PubMed  Google Scholar 

  23. 23.

    Hoper AC, Salma W, Sollie SJ, Hafstad AD, Lund J, Khalid AM, Raa J, Aasum E, Larsen TS (2014) Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice. J Nutr 144:164–169

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lawson LD, Hughes BG (1988) Human absorption of fish oil fatty acids as triacylglycerols, free acids, or ethyl esters. Biochem Biophys Res Commun 152:328–335

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lawson LD, Hughes BG (1988) Absorption of eicosapentaenoic acid and docosahexaenoic acid from fish oil triacylglycerols or fish oil ethyl esters co-ingested with a high-fat meal. Biochem Biophys Res Commun 156:960–963

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Dyerberg J, Madsen P, Moller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids 83:137–141

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    el Boustani S, Colette C, Monnier L, Descomps B, Crastes de Paulet A, Mendy F (1987) Enteral absorption in man of eicosapentaenoic acid in different chemical forms. Lipids 22:711–714

    Article  PubMed  Google Scholar 

  28. 28.

    Schuchardt JP, Schneider I, Meyer H, Neubronner J, von Schacky C, Hahn A (2011) Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations–a comparative bioavailability study of fish oil vs. krill oil. Lipids Health Dis 10:145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Nordoy A, Barstad L, Connor WE, Hatcher L (1991) Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. Am J Clin Nutr 53:1185–1190

    CAS  PubMed  Google Scholar 

  30. 30.

    Krokan HE, Bjerve KS, Mork E (1993) The enteral bioavailability of eicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters as from glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase in vitro. Biochim Biophys Acta 1168:59–67

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Verschuren PM, Nugteren DH (1989) Evaluation of jojoba oil as a low-energy fat. 2. Intestinal transit time, stomach emptying and digestibility in short-term feeding studies in rats. Food Chem Toxicol 27:45–48

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Maki KC, Rains TM (2012) Stearidonic acid raises red blood cell membrane eicosapentaenoic acid. J Nutr 142:626S–629S

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Whelan J, Gouffon J, Zhao Y (2012) Effects of dietary stearidonic acid on biomarkers of lipid metabolism. J Nutr 142:630S–634S

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Margie Huebner of ClinData Services (Fort Collins, CO) and Hua Kern of Biofortis Clinical Research for assistance in planning and performing statistical analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chad M. Cook.

Ethics declarations

Conflict of Interest

This was a sponsored study funded by Calanus AS (Tromsø, Norway). At the time the study was conducted, C.M. Cook and L.D. Derrig were employees of Biofortis Clinical Research, and K. Tande was an employee of Calanus AS. T. Larsen has received research support from Calanus AS.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cook, C.M., Larsen, T.S., Derrig, L.D. et al. Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids 51, 1137–1144 (2016). https://doi.org/10.1007/s11745-016-4189-y

Download citation

Keywords

  • n-3 Fatty acids
  • Fat absorption
  • Lipid absorption
  • Waxes