Skip to main content
Log in

Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes

  • Original Article
  • Published:
Lipids

Abstract

Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0–1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride metabolizing enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAPH :

2,2′-Amidinopropane hydrochloride

ATGL:

Adipose triglyceride lipase

DGAT1:

Diacylglycerol acyltransferase1

HSL:

Hormone-sensitive lipase

LPS:

Lipopolysaccharide

MPM:

Mouse peritoneal macrophages

Nrf2:

NF-E2-related factor2

OLA:

Oleic acid

OLA-NO2 :

Nitro-oleic acid

PON2:

Paraoxonase2

ROS:

Reactive oxygen species

References

  1. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  2. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dickhout JG, Basseri S, Austin RC (2008) Macrophage function and its impact on atherosclerotic lesion composition, progression, and stability: the good, the bad, and the ugly. Arterioscler Thromb Vasc Biol 28:1413–1415

    Article  CAS  PubMed  Google Scholar 

  4. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rom O, Aviram M (2016) Endogenous or exogenous antioxidants vs. pro-oxidants in macrophage atherogenicity. Curr Opin Lipidol 27:204–206

    Article  CAS  PubMed  Google Scholar 

  6. Afonso Mda S, Castilho G, Lavrador MS, Passarelli M, Nakandakare ER, Lottenberg SA, Lottenberg AM (2014) The impact of dietary fatty acids on macrophage cholesterol homeostasis. J Nutr Biochem 25:95–103

    Article  PubMed  Google Scholar 

  7. Rapp JH, Lespine A, Hamilton RL, Colyvas N, Chaumeton AH, Tweedie-Hardman J, Kotite L, Kunitake ST, Havel RJ, Kane JP (1994) Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 14:1767–1774

    Article  CAS  PubMed  Google Scholar 

  8. Lundberg B (1985) Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis 56:93–110

    Article  CAS  PubMed  Google Scholar 

  9. Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Goldberg IJ, Steinberg D, Witztum JL (1991) Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88:10143–10147

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rosenblat M, Aviram M (2009) Paraoxonases role in the prevention of cardiovascular diseases. Biofactors 35:98–104

    Article  CAS  PubMed  Google Scholar 

  11. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meilin E, Aviram M, Hayek T (2011) Insulin increases macrophage triglyceride accumulation under diabetic conditions through the down regulation of hormone sensitive lipase and adipose triglyceride lipase. Biofactors 37:95–103

    Article  CAS  PubMed  Google Scholar 

  13. Rosenblat M, Volkova N, Coleman R, Aviram M (2007) Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice. Atherosclerosis 195:e61–e68

    Article  CAS  PubMed  Google Scholar 

  14. Rosenblat M, Draganov D, Watson CE, Bisgaier CL, La Du BN, Aviram M (2003) Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress. Arterioscler Thromb Vasc Biol 23:468–474

    Article  CAS  PubMed  Google Scholar 

  15. Altenhöfer S, Witte I, Teiber JF, Wilgenbus P, Pautz A, Li H, Daiber A, Witan H, Clement AM, Förstermann U, Horke S (2010) One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J Biol Chem 285:24398–24403

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reddy ST, Devarajan A, Bourquard N, Shih D, Fogelman AM (2008) Is it just paraoxonase 1 or are other members of the paraoxonase gene family implicated in atherosclerosis? Curr Opin Lipidol 19:405–408

    Article  CAS  PubMed  Google Scholar 

  17. Baker PR, Schopfer FJ, O’Donnell VB, Freeman BA (2009) Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med 46:989–1003

    Article  CAS  PubMed  Google Scholar 

  18. Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR, Batthyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA, Chen YE (2006) Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J Biol Chem 281:35686–35698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsikas D, Zoerner AA, Jordan J (2011) Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim Biophys Acta 1811:694–705

    Article  CAS  PubMed  Google Scholar 

  20. Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, Sweeney S, Long MH, Iles KE, Baker LM, Branchaud BP, Chen YE, Freeman BA (2005) Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 280:42464–42475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d’Ischia M (2008) Nitro-fatty acid formation and signaling. J Biol Chem 283:15515–15519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rudolph V, Freeman BA (2009) Cardiovascular consequences when nitric oxide and lipid signaling converge. Circ Res 105:511–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nadtochiy SM, Baker PR, Freeman BA, Brookes PS (2009) Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc Res 82:333–340

    Article  CAS  PubMed  Google Scholar 

  24. Rudolph V, Rudolph TK, Schopfer FJ, Bonacci G, Woodcock SR, Cole MP, Baker PR, Ramani R, Freeman BA (2010) Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc Res 85:155–166

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Villacorta L, Chang L, Fan Z, Hamblin M, Zhu T, Chen CS, Cole MP, Schopfer FJ, Deng CX, Garcia-Barrio MT, Feng YH, Freeman BA, Chen YE (2010) Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ Res 107:540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Charles RL, Rudyk O, Prysyazhna O, Kamynina A, Yang J, Morisseau C, Hammock BD, Freeman BA, Eaton P (2014) Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci USA 111:8167–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villacorta L, Chang L, Salvatore SR, Ichikawa T, Zhang J, Petrovic-Djergovic D, Jia L, Carlsen H, Schopfer FJ, Freeman BA, Chen YE (2013) Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts. Cardiovasc Res 98:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rudolph TK, Rudolph V, Edreira MM, Cole MP, Bonacci G, Schopfer FJ, Woodcock SR, Franek A, Pekarova M, Khoo NK, Hasty AH, Baldus S, Freeman BA (2010) Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 30:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rudolph TK, Freeman BA (2009) Transduction of redox signaling by electrophile-protein reactions. Sci Signal 2:re7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Villacorta L, Zhang J, Garcia-Barrio MT, Chen XL, Freeman BA, Chen YE, Cui T (2007) Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway. Am J Physiol Heart Circ Physiol 293:H770–H776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kansanen E, Jyrkkänen HK, Volger OL, Leinonen H, Kivelä AM, Häkkinen SK, Woodcock SR, Schopfer FJ, Horrevoets AJ, Ylä-Herttuala S, Freeman BA, Levonen AL (2009) Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J Biol Chem 284:33233–33241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aviram M (1983) Plasma lipoprotein separation by discontinuous density gradient ultracentrifugation in hyperlipoproteinemic patients. Biochem Med 30:111–118

    Article  CAS  PubMed  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  34. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  35. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  36. Fuhrman B, Oiknine J, Aviram M (1994) Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 111:65–78

    Article  CAS  PubMed  Google Scholar 

  37. Ramirez DC, Mejiba SE, Mason RP (2005) Copper-catalyzed protein oxidation and its modulation by carbon dioxide: enhancement of protein radicals in cells. J Biol Chem 280:27402–27411

    Article  CAS  PubMed  Google Scholar 

  38. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  39. Gaidukov L, Tawfik DS (2005) High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry 44:11843–11854

    Article  CAS  PubMed  Google Scholar 

  40. Miyoshi H, Perfield JW 2nd, Obin MS, Greenberg AS (2008) Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105:1430–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frémont L, Belguendouz L, Delpal S (1999) Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids. Life Sci 64:2511–2521

    Article  PubMed  Google Scholar 

  42. Meilin E, Aviram M, Hayek T (2011) Insulin increases macrophage triglyceride accumulation under diabetic conditions through the down regulation of hormone sensitive lipase and adipose triglyceride lipase. Biofactors 37:95–103

    Article  CAS  PubMed  Google Scholar 

  43. Yang X, Yao H, Chen Y, Sun L, Li Y, Ma X, Duan S, Li X, Xiang R, Han J, Duan Y (2015) Inhibition of glutathione production induces macrophage CD36 expression and enhances cellular-oxidized low density lipoprotein (oxLDL) uptake. J Biol Chem 290:21788–21799

    Article  CAS  PubMed  Google Scholar 

  44. Rosenblat M, Coleman R, Reddy ST, Aviram M (2009) Paraoxonase 2 attenuates macrophage triglyceride accumulation via inhibition of diacylglycerol acyltransferase 1. J Lipid Res 50:870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rom O, Volkova N, Nandi S, Jelinek R, Aviram M (2016) Pomegranate juice polyphenols induce macrophage death via apoptosis as oppose to necrosis induced by free radical generation: a central role for oxidative stress. J Cardiovasc Pharmacol. doi:10.1097/FJC.0000000000000391

    PubMed  Google Scholar 

  46. Petrick L, Rosenblat M, Paland N, Aviram M (2016) Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol 31:713–723

    Article  CAS  PubMed  Google Scholar 

  47. Rom O, Aviram M (2016) Paraoxsonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation. Chem Biol Interact. doi:10.1016/j.cbi.2016.05.009 (in press)

  48. Rosenblat M, Aviram M (2011) Pomegranate juice protects macrophages from triglyceride accumulation: inhibitory effect on DGAT1 activity and on triglyceride biosynthesis. Ann Nutr Metab 58:1–9

    Article  CAS  PubMed  Google Scholar 

  49. Ambrozova G, Martiskova H, Koudelka A, Ravekes T, Rudolph TK, Klinke A, Rudolph V, Freeman BA, Woodcock SR, Kubala L, Pekarova M (2016) Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses. Free Radic Biol Med 90:252–260

    Article  CAS  PubMed  Google Scholar 

  50. Koenitzer JR, Bonacci G, Woodcock SR, Chen CS, Cantu-Medellin N, Kelley EE, Schopfer FJ (2015) Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II. Redox Biol 8:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–22301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meilin E, Aviram M, Hayek T (2010) Paraoxonase 2 (PON2) decreases high glucose-induced macrophage triglycerides (TG) accumulation, via inhibition of NADPH-oxidase and DGAT1 activity: studies in PON2-deficient mice. Atherosclerosis 208:390–395

    Article  CAS  PubMed  Google Scholar 

  53. Aronis A, Madar Z, Tirosh O (2005) Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med 38:1221–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Technion Rappaport Institute for Research in the Medical Sciences, Bio Rap Technologies, the Clinical Research Institute at Rambam (CRIR) and the Michigan-Israel Partnership Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aviram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenblat, M., Rom, O., Volkova, N. et al. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes. Lipids 51, 941–953 (2016). https://doi.org/10.1007/s11745-016-4169-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4169-2

Keywords

Navigation