Skip to main content

Dynamic Assessment of Functional Lipidomic Analysis in Human Urine


The development of enabling mass spectrometry platforms for the quantification of diverse lipid species in human urine is of paramount importance for understanding metabolic homeostasis in normal and pathophysiological conditions. Urine represents a non-invasive biofluid that can capture distinct differences in an individual’s physiological status. However, currently there is a lack of quantitative workflows to engage in high throughput lipidomic analysis. This study describes the development of a MS/MSALL shotgun lipidomic workflow and a micro liquid chromatography–high resolution tandem mass spectrometry (LC–MS/MS) workflow for urine structural and mediator lipid analysis, respectively. This workflow was deployed to understand biofluid sample handling and collection, extraction efficiency, and natural human variation over time. Utilization of 0.5 mL of urine for structural lipidomic analysis resulted in reproducible quantification of more than 600 lipid molecular species from over 20 lipid classes. Analysis of 1 mL of urine routinely quantified in excess of 55 mediator lipid metabolites comprised of octadecanoids, eicosanoids, and docosanoids generated by lipoxygenase, cyclooxygenase, and cytochrome P450 activities. In summary, the high-throughput functional lipidomics workflow described in this study demonstrates an impressive robustness and reproducibility that can be utilized for population health and precision medicine applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Liquid chromatography


Mass spectrometry


Solid-phase extraction


High-performance liquid chromatography




Time of flight


High resolution




Coenzyme Q


Ethanolamine glycerophospholipids


Cholesteryl esters








Acyl carnitine






Phosphatidic acid


Free fatty acid


Arachidonic acid


Eicosapentaenoic acid


Eicosatrienoic acid


Docosahexaenoic acid


Linoleic acid


Alpha-linoleic acid


13-Hydroxyoctadecadienoic acid


9,10-Dihydroxyoctadecenoic acid


5,9,11-Trihydroxy-(8β)-prosta-6E,14Z-dien-1-oic acid

19/20-OH PGF2a :

19/20-Hydroxyprostaglandin F


Cerebral spinal fluid


Clinical laboratory


Electrospray ionization


Nano liquid chromatography


  1. Han X, Yang K, Gross RW (2011) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–170

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  CAS  PubMed  Google Scholar 

  4. Dettmer K, Aronov PA (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  CAS  PubMed  Google Scholar 

  6. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11:593–598

    Article  CAS  PubMed  Google Scholar 

  7. Pisitkun T, Johnstone R, Knepper MA (2006) Discovery of urinary biomarkers. Mol Cell Proteomics 5:1760–1771

    Article  CAS  PubMed  Google Scholar 

  8. Xylinas E, Kluth LA, Rieken M et al (2014) Urine markers for detection and surveillance of bladder cancer. Urol Oncol 32:222–229

    Article  CAS  PubMed  Google Scholar 

  9. Byeon SK, Lee JY, Lee J, Moon MH (2015) Lipidomic profiling of plasma and urine from patients with Gaucher disease during enzyme replacement therapy by nanoflow liquid chromatography–tandem mass spectrometry. J Chromatogr A 1381:132–139

    Article  CAS  PubMed  Google Scholar 

  10. Schiffmann R, Forni S, Swift C et al (2013) Risk of death in heart disease is associated with elevated urinary globotriaosylceramide. J Am Heart Assoc 3:e000394

    Article  Google Scholar 

  11. Musante L, Tataruch DE, Holthofer H (2014) Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy. Front Endocrinol (Lausanne) 5:149

    Google Scholar 

  12. Dijkstra S, Mulders PFA, Schalken JA (2014) Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin Biochem 47:889–896

    Article  CAS  PubMed  Google Scholar 

  13. Stewart IJ, Glass KR, Howard JT et al (2015) The potential utility of urinary biomarkers for risk prediction in combat casualties: a Prospective Observational Cohort Study. Criti Care 19:252

    Article  Google Scholar 

  14. Varghese SA, Powell TB, Budisavljevic MN et al (2007) Urine Biomarkers Predict the Cause of Glomerular Disease. J Am Soc Nephrol 18:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan SR, Glenton PA, Backov R, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072

    Article  CAS  PubMed  Google Scholar 

  16. Lim S, Bang DY, Rha KH, Moon MH (2014) Rapid screening of phospholipid biomarker candidates from prostate cancer urine samples by multiple reaction monitoring of UPLC-ESI-MS/MS and statistical approaches. Bull Kor Chem Soc 35:1133–1138

    Article  CAS  Google Scholar 

  17. Min HK, Lim S, Chung BC, Moon MH (2011) Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal Bioanal Chem 399:823–830

    Article  CAS  PubMed  Google Scholar 

  18. Kiebish MA, Bell R, Yang K et al (2010) Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J Lipid Res 51:2153–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simons B, Kauhanen D, Sylvänne T et al (2012) Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer. Metabolites 2:195–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Powell WS (1999) Extraction of eicosanoids from biological fluids, cells, and tissues. Methods Mol Biol 120:11–24

    CAS  PubMed  Google Scholar 

  21. Heiskanen LA, Suoniemi M, Ta HX et al (2013) Long-term performance and stability of molecular shotgun lipidomic analysis of human plasma samples. Anal Chem 85:8757–8763

    Article  CAS  PubMed  Google Scholar 

  22. Kiebish MA, Yang K, Sims HF et al (2012) Myocardial regulation of lipidomic flux by cardiolipin synthase: setting the beat for bioenergetic efficiency. J Biol Chem 287:25086–25097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strassburg K, Huijbrechts AML, Kortekaas KA et al (2012) Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem 404:1413–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han X, Yang K, Yang J et al (2006) Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J Am Soc Mass Spec 17:264–274

    Article  CAS  Google Scholar 

  25. Koivusalo M, Haimi P, Heikinheimo L et al (2001) Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42:663–672

    PubMed  Google Scholar 

  26. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  27. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Psychogios N, Hau DD, Peng J et al (2011) The human serum metabolome. PLoS ONE 6:e16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radon TP, Massat NJ, Jones R et al (2015) Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res 21:3512–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balgoma D, Larsson J, Rokach J et al (2013) Quantification of lipid mediator metabolites in human urine from asthma patients by electrospray ionization mass spectrometry: controlling matrix effects. Anal Chem 85:7866–7874

    Article  CAS  PubMed  Google Scholar 

  31. Ejsing CS, Sampaio JL, Surendranath V et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106:2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zubarev RA, Makarov A (2013) Orbitrap Mass Spectrometry. Anal Chem 85:5288–5296

    Article  CAS  PubMed  Google Scholar 

  33. Andrews GL, Simons BL, Young JB et al (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem 83:5442–5446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schröder D (2011) Ion mobility spectrometry—mass spectrometry. Theory and applications. Herausgegeben von Charles L. Wilkins und Sarah Trimpin. Angew Chem 123:10674

    Article  Google Scholar 

  35. Groessl M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140:6904–6911

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael A. Kiebish.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 59 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockwell, H.E., Gao, F., Chen, E.Y. et al. Dynamic Assessment of Functional Lipidomic Analysis in Human Urine. Lipids 51, 875–886 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: