, Volume 51, Issue 6, pp 743–755 | Cite as

Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (Sparus aurata) Juveniles

  • Carolina Castro
  • Geneviève Corraze
  • Ana Basto
  • Laurence Larroquet
  • Stéphane Panserat
  • Aires Oliva-Teles
Original Article


A digestibility trial was performed with gilthead sea bream juveniles (IBW = 72 g) fed four diets differing in lipid source (fish oil, FO; or a blend of vegetable oil, VO) and starch content (0 %, CH−; or 20 %, CH+) to evaluate the potential interactive effects between carbohydrates and VO on the processes involved in digestion, absorption and transport of lipids and glucose. In fish fed VO diets a decrease in lipid digestibility and in cholesterol (C), High Density Lipoprotein(HDL)-C and Low Density Lipoprotein (LDL)-C (only in CH+ group) were recorded. Contrarily, dietary starch induced postprandial hyperglycemia and time related alterations on serum triacylglycerol (TAG), phospholipid (PL) and C concentrations. Fish fed a CH+ diet presented lower serum TAG than CH− group at 6 h post-feeding, and the reverse was observed at 12 h post-feeding for TAG and PL. Lower serum C and PL at 6 h post-feeding were recorded only in VOCH+ group. No differences between groups were observed in hepatic and intestinal transcript levels of proteins involved in lipid transport and hydrolysis (FABP, DGAT, GPAT, MTP, LPL, LCAT). Lower transcript levels of proteins related to lipid transport (ApoB, ApoA1, FABP2) were observed in the intestine of fish fed the CH+ diet, but remained unchanged in the liver. Overall, transcriptional mechanisms involved in lipid transport and absorption were not linked to changes in lipid serum and digestibility. Dietary starch affected lipid absorption and transport, probably due to a delay in lipid absorption. This study suggests that a combination of dietary VO and starch may negatively affect cholesterol absorption and transport.


Alternative ingredients Digestibility Gene expression Nutrient absorption and transport Serum metabolites 



Apparent digestibility coefficients








Polyunsaturated fatty acids with 18 carbons


Diacylglycerol acyltransferase


Docosahexaenoic acid


Eicosapentaenoic acid


Fatty acid


Fatty acid binding protein


Fish meal


Fish oil




Glycerol-3-phosphate acyltransferase




High-density lipoproteins


Lecithin-cholesterol acyltransferase


Low-density lipoproteins


Long-chain polyunsaturated fatty acids


Lipoprotein lipase


Microsomal triglyceride transfer protein


Monounsaturated fatty acids


Non-esterified fatty acids




Saturated fatty acids




Very low density lipoprotein


Vegetable oil



The authors express their thanks to P. Correia for technical assistance. This work was partially supported by national funds through the FCT (Foundation for Science and Technology)—under the project‘PEst-C/MAR/LA0015/2011’ and co-financed by the European Regional Development Fund (ERDF) through the COMPETE—operational competitiveness programme. C. C. was supported by a grant (SFRH/BD/76297/2011) from FCT, Portugal.


  1. 1.
    Bakke AM, Glover C, Krogdahl Å (2010) In: Grosell M, Farrell AP, Brauner CJ (eds) Feeding, digestion and absorption of nutrients. Fish Physiology, Academic Press, USA, pp 57–110Google Scholar
  2. 2.
    Xiao C, Hsieh J, Adeli K, Lewis GF (2011) Gut–liver interaction in triglyceride-rich lipoprotein metabolism. Am J Physiol Endocrinol Metab 301:E429–E446CrossRefPubMedGoogle Scholar
  3. 3.
    Olsen RE, Ringø E (1997) Lipid digestibility in fish: a review. Recent Res Dev Lipid Res 1:199–265Google Scholar
  4. 4.
    Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184CrossRefGoogle Scholar
  5. 5.
    Castro C, Corraze G, Panserat S, Oliva-Teles A (2015) Effects of fish oil replacement by a vegetable oil blend on digestibility, postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (Dicentrarchus labrax) juveniles. Aquac Nutr 21:592–603CrossRefGoogle Scholar
  6. 6.
    Couto A, Enes P, Peres H, Oliva-Teles A (2012) Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles. Fish Physiol Biochem 38:595–601CrossRefPubMedGoogle Scholar
  7. 7.
    Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol A 143:89–96CrossRefGoogle Scholar
  8. 8.
    Kamalam BS, Panserat S, Aguirre P, Geurden I, Fontagné-Dicharry S, Médale F (2013) Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol A 164:417–427CrossRefGoogle Scholar
  9. 9.
    Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11:103–122CrossRefGoogle Scholar
  10. 10.
    Castro C, Pérez-Jiménez A, Coutinho F, Pousão-Ferreira P, Brandão TM, Oliva-Teles A, Peres H (2013) Digestive enzymes of meagre (Argyrosomus regius) and white seabream (Diplodus sargus). Effects of dietary brewer’s spent yeast supplementation. Aquaculture 416–417:322–327CrossRefGoogle Scholar
  11. 11.
    Olsen RE, Myklebust R, Kaino T, Ringo E (1999) Lipid digestibility and ultrastructural changes in the enterocytes of Arctic charr (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol Biochem 21:35–44CrossRefGoogle Scholar
  12. 12.
    Corraze G (2001) In: Guillaume J, Kaushik S, Bergot P, Metailler K (eds) Lipid nutrition—nutrition and feeding of fish and crustaceans. Springer, Chichester UK, pp 111–130Google Scholar
  13. 13.
    Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B 90:679–690PubMedGoogle Scholar
  14. 14.
    Gu M, Kortner TM, Penn M, Hansen AK, Krogdahl Å (2014) Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br J Nutr 111:432–444CrossRefPubMedGoogle Scholar
  15. 15.
    Mansbach CM 2nd, Gorelick F (2007) Development and physiological regulation of intestinal lipid absorption. II. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons. Am J Physiol Gastrointest Liver Physiol 293:G645–G650CrossRefPubMedGoogle Scholar
  16. 16.
    Borges P, Médale F, Véron V, dos Pires M, Dias A, Valente LMP (2013) Lipid digestion, absorption and uptake in Solea senegalensis. Comp Biochem Physiol A 166:26–35CrossRefGoogle Scholar
  17. 17.
    Kamalam BS, Médale F, Larroquet L, Corraze G, Panserat S (2013) Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates. PLoS One 8:e76570CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Francis DS, Turchini GM, Jones PL, De Silva SS (2007) Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii. Aquaculture 269:447–455CrossRefGoogle Scholar
  19. 19.
    Storebakken T, Shearer KD, Refstie S, Lagocki S, McCool J (1998) Interactions between salinity, dietary carbohydrate concentration on the digestibility of macronutrients and energy in rainbow trout (Oncorhynchus mykiss). Aquaculture 163:347–359CrossRefGoogle Scholar
  20. 20.
    Torstensen BE, Lie O, Froyland L (2000) Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids 35:653–664CrossRefPubMedGoogle Scholar
  21. 21.
    Castro C, Corraze G, Pérez-Jiménez A, Larroquet L, Cluzeaud M, Panserat S, Oliva-Teles A (2015) Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Br J Nutr 114:1143–1156CrossRefPubMedGoogle Scholar
  22. 22.
    Jordal AEO, Lie Ø, Torstensen BE (2007) Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.). Aquac Nutr 13:114–130CrossRefGoogle Scholar
  23. 23.
    Morais S, Pratoomyot J, Torstensen BE, Taggart JB, Guy DR, Bell JG, Tocher DR (2011) Diet x genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon (Salmo salar) in response to replacement of dietary fish oil with vegetable oil. Br J Nutr 106:1457–1469CrossRefPubMedGoogle Scholar
  24. 24.
    Luo L, Xue M, Vachot C, Geurden I, Kaushik S (2014) Dietary medium chain fatty acids from coconut oil have little effects on postprandial plasma metabolite profiles in rainbow trout (Oncorhynchus mykiss). Aquaculture 420–421:24–31CrossRefGoogle Scholar
  25. 25.
    Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G (2006) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br J Nutr 96:299–309CrossRefPubMedGoogle Scholar
  26. 26.
    Richard N, Mourente G, Kaushik S, Corraze G (2006) Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture 261:1077–1087CrossRefGoogle Scholar
  27. 27.
    Geay D, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M, Kaushik S, Cahu CL, Mazurais D (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-subfamilies showing different growth rate with the plant-based diet. BMC Genom 12:522–539CrossRefGoogle Scholar
  28. 28.
    Kjaer MA, Vegusdal A, Gjøen T, Rustan AC, Todorcevic M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochi Biophys Acta 1781:112–122CrossRefGoogle Scholar
  29. 29.
    Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB (2008) Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genom 9:299–313CrossRefGoogle Scholar
  30. 30.
    Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gibson GT, Hardy RW, Elliot H, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38:551–579CrossRefGoogle Scholar
  31. 31.
    Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. doi: 10.1016/j.aquaculture.2015.01.010 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism. Fish Physiol Biochem 35:519–539CrossRefPubMedGoogle Scholar
  33. 33.
    Enes P, Panserat S, Kaushik S, Oliva-Teles A (2011) Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev Fish Sci 19:201–215CrossRefGoogle Scholar
  34. 34.
    Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182:1015–1045CrossRefPubMedGoogle Scholar
  35. 35.
    Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquacult Res 41:717–732CrossRefGoogle Scholar
  36. 36.
    Oliva-Teles A (2000) Recent advances in European sea bass and gilthead sea bream nutrition. Aquacult Int 8:477–492CrossRefGoogle Scholar
  37. 37.
    Cho CY, Slinger SJ, Bayley HS (1982) Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol 73:25–41CrossRefGoogle Scholar
  38. 38.
    Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  39. 39.
    Varó I, Navarro J, Rigos G, Del Ramo J, Calduch-Giner J, Hernández A, Pertusa J, Torreblanca A (2013) Proteomic evaluation of potentiated sulfa treatment on gilthead sea bream (Sparus aurata L.) liver. Aquaculture 376–379:36–44CrossRefGoogle Scholar
  40. 40.
    Enes P, Panserat S, Kaushik S, Oliva-Teles A (2008) Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures. Comp Biochem Physiol A 149:80–86CrossRefGoogle Scholar
  41. 41.
    Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, Sitjà-Bobadilla A (2015) Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol 44:117–128CrossRefPubMedGoogle Scholar
  42. 42.
    Mininni AN, Milan M, Ferraresso S, Petochi T, Di Marco P, Marino G, Livi S, Romualdi C, Bargelloni L, Patarnello T (2014) Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genom 15:765CrossRefGoogle Scholar
  43. 43.
    Pérez-Sánchez J, Borrel M, Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S (2013) Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comp Biochem Physiol D 8:123–130Google Scholar
  44. 44.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bell JG, Koppe W (2011) Lipids in Aquafeeds. In: Turchini GM, Ng WK, Tocher DR (eds) Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. Taylor & Francis, CRC Press, Boca Raton, pp 21–59Google Scholar
  46. 46.
    Geurden I, Kaushik S, Corraze G (2008) Dietary phosphatidylcholine affects postprandial plasma levels and digestibility of lipid in common carp (Cyprinus carpio). Br J Nutr 100:512–517CrossRefPubMedGoogle Scholar
  47. 47.
    Tocher DR, Bendiksen EA, Campbell PJ, Bell JG (2008) The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280:21–34CrossRefGoogle Scholar
  48. 48.
    Caballero MJ, Izquierdo MS, Kjørsvik E, Montero D, Socorro J, Fernández AJ, Rosenlund G (2003) Morphological aspects of intestinal cells from gilthead sea bream (Sparus aurata) fed diets containing different lipid sources. Aquaculture 225:325–340CrossRefGoogle Scholar
  49. 49.
    Pérez JA, Rodríguez C, Henderson RJ (1999) The uptake and esterification of radiolabelled fatty acids by enterocytes isolated from rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 20:125–134CrossRefGoogle Scholar
  50. 50.
    Caballero MJ, Gallardo G, Robaina L, Montero D, Fernández A, Izquierdo M (2006) Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). Br J Nutr 95:448–454CrossRefPubMedGoogle Scholar
  51. 51.
    Oxley A, Torstensen BE, Rustan AC, Olsen RE (2005) Enzyme activities of intestinal triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.). Comp Biochem Physiol B 141:77–87CrossRefPubMedGoogle Scholar
  52. 52.
    Fernandez ML, West KL (2005) Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr 135:2075–2078PubMedGoogle Scholar
  53. 53.
    Katan M, Zock P, Mensink R (1994) Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 60:1017S–1022SPubMedGoogle Scholar
  54. 54.
    Torstensen BE, Froyland L, Lie O (2004) Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil–effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquacult Nutr 10:175–192CrossRefGoogle Scholar
  55. 55.
    Brufau G, Canela MA, Rafecas M (2008) Phytosterols: physiologic and metabolic aspects related to cholesterol lowering properties. Nutr Res 28:217–225CrossRefPubMedGoogle Scholar
  56. 56.
    Moghadasian MH, Frohlich JJ (1999) Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med 107:588–594CrossRefPubMedGoogle Scholar
  57. 57.
    Ostlund RE (2002) Phytosterols in human nutrition. Annu Rev Nutr 22:533–549CrossRefPubMedGoogle Scholar
  58. 58.
    Ostlund RE (2004) Phytosterols and cholesterol metabolism. Curr Opin Lipidol 15:37–41CrossRefPubMedGoogle Scholar
  59. 59.
    Gilman CI, Leusch FD, Breckenridge WC, MacLatchy DL (2003) Effects of a phytosterol mixture on male fish plasma lipoprotein fractions and testis P450scc activity. Gen Comp Endocrinol 130:172–184CrossRefPubMedGoogle Scholar
  60. 60.
    de Jong A, Plat J, Mensink RP (2003) Metabolic effects of plant sterols and stanols (review). J Nutr Biochem 14:362–369CrossRefPubMedGoogle Scholar
  61. 61.
    Panserat S, Kolditz C, Richard N, Plagnes-Juan E, Piumi F, Esquerré D, Médale F, Corraze G, Kaushik S (2008) Hepatic gene expression profiles in juvenile rainbow trout (Oncorhynchus mykiss) fed fishmeal or fish oil-free diets. Br J Nutr 100:953–967CrossRefPubMedGoogle Scholar
  62. 62.
    Peng M, Xu W, Mai K, Zhou H, Zhang Y, Liufu Z, Zhang K, Ai Q (2014) Growth performance, lipid deposition and hepatic lipid metabolism related gene expression in juvenile turbot (Scophthalmus maximus L.) fed diets with various fish oil substitution levels by soybean oil. Aquaculture 433:442–449CrossRefGoogle Scholar
  63. 63.
    Dorfman SE, Wang S, Vega-López S, Jauhiainen M, Lichtenstein AH (2005) Dietary fatty acids and cholesterol differentially modulate HDL cholesterol metabolism in golden-syrian hamsters. J Nutr 135:492–498PubMedGoogle Scholar
  64. 64.
    Jonas A (2000) Lecithin cholesterol acyltransferase. Biochim Biophys Acta 1529:245–256CrossRefPubMedGoogle Scholar
  65. 65.
    Kunnen S, Van Eck M (2012) Lecithin: cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res 53:1783–1799CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hatahet W, Cole L, Kudchodkar BJ, Fungwe TV (2003) Dietary fats differentially modulate the expression of lecithin:cholesterol acyltransferase, apoprotein-A1 and scavenger receptor B1 in rats. J Nutr 133:689–694PubMedGoogle Scholar
  67. 67.
    Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186CrossRefGoogle Scholar
  68. 68.
    Kamalam BS, Médale F, Kaushik S, Polakof S, Skiba-Cassy S, Panserat S (2012) Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content. J Exp Biol 215:2567–2578CrossRefPubMedGoogle Scholar
  69. 69.
    Peres MH, Gonçalves P, Oliva-Teles A (1999) Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture 179:415–423CrossRefGoogle Scholar
  70. 70.
    Fried SK, Rao SP (2003) Sugars, hypertriglyceridemia, and cardiovascular disease. Am J Clin Nutr 78:873S–880SPubMedGoogle Scholar
  71. 71.
    Parks EJ, Hellerstein MK (2000) Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am J Clin Nutr 71:412–433PubMedGoogle Scholar
  72. 72.
    Fountoulaki E, Alexis MN, Nengas I, Venou B (2005) Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream (Sparus aurata L.). Aquacult Res 36:1243–1251CrossRefGoogle Scholar
  73. 73.
    Hemre GI, Sandnes K, Lie ø, Torrissen O, Waagboe R (1995) Carbohydrate nutrition in Atlantic salmon, Salmo salar L.: growth and feed utilization. Aquacult Res 26:149–154CrossRefGoogle Scholar
  74. 74.
    Iqbal J, Hussain MM (2005) Evidence for multiple complementary pathways for efficient cholesterol absorption in mice. J Lipid Res 46:1491–1501CrossRefPubMedGoogle Scholar
  75. 75.
    Pan X, Hussain MM (2012) Gut triglyceride production. Biochim Biophys Acta 1821:727–735CrossRefPubMedGoogle Scholar
  76. 76.
    Engelking LR (2010) In: Engelking LR (ed) Triglycerides and Glycerophospholipids, Textbook of veterinary physiological chemistry, updated 2nd edn., Academic Press (Elsevier), Amsterdam Netherlands, pp 315–326Google Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Carolina Castro
    • 1
    • 2
  • Geneviève Corraze
    • 3
  • Ana Basto
    • 1
  • Laurence Larroquet
    • 3
  • Stéphane Panserat
    • 3
  • Aires Oliva-Teles
    • 1
    • 2
  1. 1.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  3. 3.INRAUR1067 Nutrition Metabolism AquacultureSaint-Pée-Sur-NivelleFrance

Personalised recommendations