Skip to main content
Log in

Structure of Sphingolipids From Sea Cucumber Cucumaria frondosa and Structure-Specific Cytotoxicity Against Human HepG2 Cells

  • Original Article
  • Published:
Lipids

Abstract

To investigate the relationship between structure and activity, three glucocerebroside series (CFC-1, CFC-2 and CFC-3), ceramides (CF-Cer) and long-chain bases (CF-LCB) of sea cucumber Cucumaria frondosa (C. frondosa) were isolated and evaluated in HepG2 cells. The molecular species of CFC-1, CFC-2 and CFC-3 and CF-Cer were identified using reversed-phase liquid chromatography with heated electrospray ionization coupled to high-resolution mass spectrometry (RPLC-HESI-HRMS), and determined on the basis of chemical and spectroscopic evidence: For the three glucocerebroside series, fatty acids (FA) were mainly saturated (18:0 and 22:0), monounsaturated (22:1, 23:1 and 24:1) and 2-hydroxyl FA (2-HFA) (23:1 h and 24:1 h), the structure of long-chain bases (LCB) were dihydroxy (d17:1, d18:1 and d18:2) and trihydroxy (t16:0 and t17:0), and the glycosylation was glucose; For CF-Cer, FA were primarily saturated (17:0) and monounsaturated (16:1 and 19:1), the structure of LCB were dihydroxy (d17:1 and d18:1), and trihydroxy (t16:0). The results of cell experiment indicated that all of three glucocerebroside series, CF-Cer and CF-LCB exhibited an inhibitory effects on cell proliferation. Moreover, CFC-3 was most effective in three glucocerebrosides to HepG-2 cell viability. The inhibition effect of CF-LCB was the strongest, and the inhibition effect of CF-Cer was much stronger than glucocerebrosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-HFA:

2-Hydroxyl fatty acid

Cer:

Ceramide

CFC-1, CFC-2 and CFC-3:

Three glucocerebroside series of C. frondosa

CF-Cer:

Ceramide of C. frondosa

CF-LCB:

Long-chain base of C. frondosa

C. frondosa :

Sea cucumber Cucumaria frondosa

FA:

Fatty acid(s)

GC-MS:

Gas chromatography with coupling to mass spectrometry

HPLC-ELSD:

High performance liquid chromatography-evaporative light scattering detection

HSCCC:

High speed counter-current chromatography

LCB:

Long-chain base(s)

MUFA:

Monounsaturated fatty acid(s)

RPLC-HESI-HRMS:

Reversed-phase liquid chromatography with heated electrospray ionization coupled to high-resolution mass spectrometry

References

  1. Guo Y, Ding Y, Xu F, Liu B, Kou Z, Xiao W, Zhu J (2015) Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (Holothurians). J Ethnopharmacol 165:61–72

    Article  CAS  PubMed  Google Scholar 

  2. Cui FX, Xue CH, Li ZJ, Zhang YQ, Dong P, Fu XY, Gao X (2007) Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chem 100(3):1120–1125

    Article  CAS  Google Scholar 

  3. Chen SG, Xue CH, Yin LA, Tang QJ, Yu GL, Chai WG (2011) Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohyd Polym 83(2):688–696

    Article  CAS  Google Scholar 

  4. Dong P, Xue CH, Du QZ (2008) Separation of two main triterpene glycosides from sea cucumber Pearsonothuria graeffei by high-speed countercurrent chromatography. Acta Chromatogr 20(2):269–276

    Article  CAS  Google Scholar 

  5. Kisa F, Yamada K, Kaneko M, Inagaki M, Higuchi R (2005) Constituents of holothuroidea, 14. Isolation and structure of new glucocerebroside molecular species from the sea cucumber Stichopus japonicus. Chem Pharm Bull (Tokyo) 53(4):382–386

    Article  CAS  Google Scholar 

  6. Sugawara T, Zaima N, Yamamoto A, Sakai S, Noguchi R, Hirata T (2006) Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Biosci Biotechnol Biochem 70(12):2906–2912

    Article  CAS  PubMed  Google Scholar 

  7. Duan JJ, Sugawara T, Hirata T (2010) Rapid quantitative analysis of sphingolipids in seafood using HPLC with evaporative light-scattering detection: its application in tissue distribution of sphingolipids in fish. J Oleo Sci 59(9):509–513

    Article  CAS  PubMed  Google Scholar 

  8. Duan RD, Nilsson A (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res 48(1):62–72

    Article  CAS  PubMed  Google Scholar 

  9. Schmelz EM (2004) Sphingolipids in the chemoprevention of colon cancer. Front Biosci 9:2632–2639

    Article  CAS  PubMed  Google Scholar 

  10. Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr (2000) Colonic cell proliferation and aberrant crypt foci formation are inhibited by dairy glycosphingolipids in 1, 2-dimethylhydrazine-treated CF1 mice. J Nutr 130(3):522–527

    CAS  PubMed  Google Scholar 

  11. Schmelz EM, Roberts PC, Kustin EM, Lemonnier LA, Sullards MC, Dillehay DL, Merrill AH Jr (2001) Modulation of intracellular β-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids. Cancer Res 61(18):6723–6729

    CAS  PubMed  Google Scholar 

  12. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Bio 9(2):139–150

    Article  CAS  Google Scholar 

  13. Oku H, Wongtangtintharn S, Iwasaki H, Inafuku M, Shimatani M, Toda T (2007) Tumor specific cytotoxicity of glucosylceramide. Cancer Chemoth Pharm 60(6):767–775

    Article  CAS  Google Scholar 

  14. Oku H, Li C, Shimatani M, Iwasaki H, Toda T, Okabe T, Watanabe H (2009) Tumor specific cytotoxicity of β-glucosylceramide: structure–cytotoxicity relationship and anti-tumor activity in vivo. Cancer Chemoth Pharm 64(3):485–496

    Article  CAS  Google Scholar 

  15. Aida K, Kinoshita M, Tanji M, Sugawara T, Tamura M, Ono J, Ueno N, Ohnishi M (2005) Prevention of aberrant crypt foci formation by dietary maize and yeast cerebrosides in 1,2-dimethylhydrazine-treated mice. J Oleo Sci 54:45–49

    Article  CAS  Google Scholar 

  16. Zhou L, Zhang YJ, Gao LJ, Ying Y, Qi JH, Zhi Q (2014) Structure-activity relationship of Baifuzi-cerebrosides on BKCa channel activation. Eur J Med Chem 75:301–307

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Beckman BS, Foroozesh M (2013) A review of ceramide analogs as potential anticancer agents. Future Med Chem 5(12):1405–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dressler KA, Mathias S, Kolesnick RN (1992) Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science 255(5052):1715–1718

    Article  CAS  PubMed  Google Scholar 

  19. Menaldino DS, Bushnev A, Sun A, Liotta DC, Symolon H, Desai K, Dillehay DL, Peng Q, Wang E, Allegood J, Trotman-Pruett S, Sullards MC, Merrill AH Jr (2003) Sphingoid bases and de novo ceramide synthesis: enzymes involved, pharmacology and mechanisms of action. Pharmacol Res 47(5):373–381

    Article  CAS  PubMed  Google Scholar 

  20. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51(1):50–62

    Article  PubMed  Google Scholar 

  21. Ben-David O, Futerman AH (2010) The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. NeuroMol Med 12(4):341–350

    Article  CAS  Google Scholar 

  22. Pinto SN, Silva LC, Futerman AH, Prieto M (2011) Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim Biophys Acta 1808 11:2753–2760

    Article  Google Scholar 

  23. Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH Jr (2008) Thematic Review Series: Sphingolipids. Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res 49(8):1621–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borek C, Ong A, Stevens VL, Wang E, Merrill AH Jr (1991) Long-chain (sphingoid) bases inhibit multistage carcinogenesis in mouse C3H/10T1/2 cells treated with radiation and phorbol 12-myristate 13-acetate. Proc Nat Acad Sci USA 88(5):1953–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sugawara T, Kinoshita M, Ohnishi M, Miyazawa T (2002) Apoptosis induction by wheat-flour sphingoid bases in DLD-1 human colon cancer cells. Biosci Biotechnol Biochem 66(10):2228–2231

    Article  CAS  PubMed  Google Scholar 

  26. Aida K, Kinoshita M, Sugawara T, ONO J, Miyazawa T, Ohnishi M (2004) Apoptosis inducement by plant and fungus sphingoid bases in human colon cancer cells. J Oleo Sci 53:503–510

    Article  CAS  Google Scholar 

  27. Loiseau N, Obata Y, Moradian S, Yoshino S, Aburai K, Takayama K, Sakamoto K, Holleran WM, Elias PM, Uchida Y (2013) Sphingoid base composition influences normal function, and dictates altered lamellar bilayer function in atopic dermatitis. J Dermatol Sci 69(2):e44–e45

    Article  Google Scholar 

  28. Bartke N, Fischbeck A, Humpf HU (2006) Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes [Ipomoea batatas (L.) Lam.] by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Mol Nutr Food Res 50(12):1201–1211

    Article  CAS  PubMed  Google Scholar 

  29. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36(2):207–224

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Cheng H (2005) Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J Lipid Res 46(1):163–175

    Article  CAS  PubMed  Google Scholar 

  31. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu J, Guo S, Du L, Wang YM, Sugawara T, Hirata T, Xue CH (2012) Isolation of cytotoxic glucocerebrosides and long-chain bases from sea cucumber Cucumaria frondosa using high speed counter-current chromatography. J Oleo Sci 62(3):133–142

    Article  Google Scholar 

  33. Xu J, Duan JJ, Xue CH, Feng TY, Dong P, Sugawara T, Hirata T (2011) Analysis and comparison of glucocerebroside species from three edible sea cucumbers using liquid chromatography-ion trap-time-of-flight mass spectrometry. J Agric Food Chem 59(22):12246–12253

    Article  CAS  PubMed  Google Scholar 

  34. Hsu FF, Turk J (2001) Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 13(5):558–570

    Article  Google Scholar 

  35. Hsu FF, Turk J (2008) Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 19(11):1681–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  CAS  PubMed  Google Scholar 

  37. Du L, Li ZJ, Xu J, Wang JF, Xue Y, Xue CH, Takahashi K, Wang YM (2012) The anti-tumor activities of cerebrosides derived from sea cucumber Acaudina molpadioides and starfish Asterias amurensis in vitro and in vivo. J Oleo Sci 61(6):321–330

    Article  CAS  PubMed  Google Scholar 

  38. Kim HJ, Kim HJ, Lim SC, Kim SH, Kim TY (2003) Induction of apoptosis and expression of cell cycle regulatory proteins in response to a phytosphingosine derivative in HaCaT human keratinocyte cells. Mol Cells 16(3):331–337

    CAS  PubMed  Google Scholar 

  39. Kim HJ, Weonhye S, Seo PC, Hyung-Ok K, Tae-Yoon K (2003) Differential regulation of cyclooxygenase-2 expression by phytosphingosine derivatives, NAPS and TAPS, and its role in the NAPS or TAPS-mediated apoptosis. J Invest Dermatol 121(5):1126–1134

    Article  CAS  PubMed  Google Scholar 

  40. Ji L, Zhang GS, Akahori Y, Hirabayashi Y (1995) Induction of apoptotic DNA fragmentation and cell death by natural ceramide. FEBS Lett 358(2):211–214

    Article  CAS  PubMed  Google Scholar 

  41. Uchida Y, Hama H, Alderson NL, Douangpanya S, Wang Y, Crumrine DA, Elias PM, Holleran WM (2007) Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation. J Biol Chem 282(18):13211–13219

    Article  CAS  PubMed  Google Scholar 

  42. Sugawara T, Kinoshita M, Ohnishi M, Nagata J, Saito M (2003) Digestion of maize sphingolipids in rats and uptake of sphingadienine by Caco-2 cells. J Nutr 133(9):2777–2782

    CAS  PubMed  Google Scholar 

  43. Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, Inokuchi JI (2014) Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. J Lipid Res 55(7):1343–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marquês JT, Cordeiro AM, Viana AS, Herrmann A, Marinho HS, de Almeida RF (2015) Formation and properties of membrane ordered domains by phytoceramide: role of sphingoid base hydroxylation. Langmuir 31(34):9410–9421

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from National Natural Science Foundation of China (No. 31201329), National Natural Science Foundation of China (No. 31330060), and the Program for Changjiang Scholars and Innovative Research Team in the University (IRT1188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Song, Y., Tao, S. et al. Structure of Sphingolipids From Sea Cucumber Cucumaria frondosa and Structure-Specific Cytotoxicity Against Human HepG2 Cells. Lipids 51, 321–334 (2016). https://doi.org/10.1007/s11745-016-4128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4128-y

Keywords

Navigation