Skip to main content
Log in

Kinetics of Bis-Allylic Hydroperoxide Synthesis in the Iron-Containing Lipoxygenase 2 from Cyanothece and the Effects of Manganese Substitution

  • Original Article
  • Published:
Lipids

Abstract

Lipoxygenases (LOX) catalyze the regio- and stereospecific insertion of dioxygen into polyunsaturated fatty acids. While the catalytic metal of LOX is typically a non-heme iron, some fungal LOX contain manganese as catalytic metal (MnLOX). In general, LOX insert dioxygen at C9 or C13 of linoleic acid leading to the formation of conjugated hydroperoxides. MnLOX (EC 1.13.11.45), however, catalyze the oxygen insertion also at C11, resulting in bis-allylic hydroperoxides. Interestingly, the iron-containing CspLOX2 (EC 1.13.11.B6) from Cyanothece PCC8801 also produces bis-allylic hydroperoxides. What role the catalytic metal plays and how this unusual reaction is catalyzed by either MnLOX or CspLOX2 is not understood. Our findings suggest that only iron is the catalytically active metal in CspLOX2. The enzyme loses its catalytic activity almost completely when iron is substituted with manganese, suggesting that the catalytic metal is not interchangeable. Using kinetic and spectroscopic approaches, we further found that first a mixture of bis-allylic and conjugated hydroperoxy products is formed. This is followed by the isomerization of the bis-allylic product to conjugated products at a slower rate. These results suggest that MnLOX and CspLOX2 share a very similar reaction mechanism and that LOX with a Fe or Mn cofactor have the potential to form bis-allylic products. Therefore, steric factors are probably responsible for this unusual specificity. As CspLOX2 is the LOX with the highest proportion of the bis-allylic product known so far, it will be an ideal candidate for further structural analysis to understand the molecular basis of the formation of bis-allylic hydroperoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

H(P)ODE:

Hydroperoxy-octadecadienoic acid(s)

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

k cat :

Turnover number

K m :

Michaelis Menten constant

LOX:

Lipoxygenase(s)

MnLOX:

Manganese lipoxygenase(s)

SDS:

Sodium dodecylsulfate

References

  1. Schneider C, Pratt DA, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 14:473–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  3. Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D (2015) Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 57:13–39

    Article  CAS  PubMed  Google Scholar 

  4. Kühn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mashima R, Okuyama T (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biology 6:297–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamberg M, Su C, Oliw E (1998) Manganese lipoxygenase—discovery of a bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction. J Biol Chem 273:13080–13088

    Article  CAS  PubMed  Google Scholar 

  8. Wennman A, Oliw EH (2013) Secretion of two novel enzymes, manganese 9S-lipoxygenase and epoxy alcohol synthase, by the rice pathogen Magnaporthe salvinii. J Lipid Res 54:762–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wennman A, Jernerén F, Magnuson A, Oliw EH (2015) Expression and characterization of manganese lipoxygenase of the rice blast fungus reveals prominent sequential lipoxygenation of α-linolenic acid. Arch Biochem Biophys. doi:10.1016/j.abb.2015.1007.1014

    PubMed  Google Scholar 

  10. Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I (2013) An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8:e64919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaffney B, Su C, Oliw E (2001) Assignment of EPR transitions in a manganese-containing lipoxygenase and prediction of local structure. Appl Magn Res 21:413–424

    Article  Google Scholar 

  12. Tomchick DR, Phan P, Cymborowski M, Minor W, Holman TR (2001) Structural and functional characterization of second-coordination sphere mutants of soybean lipoxygenase-1. Biochemistry 40:7509–7517

    Article  CAS  PubMed  Google Scholar 

  13. Andreou A, Göbel C, Hamberg M, Feussner I (2010) A bisallylic mini-lipoxygenase from cyanobacterium Cyanothece sp. that has an iron as cofactor. J Biol Chem 285:14178–14186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wennman A, Magnuson A, Hamberg M, Oliw EH (2015) Manganese lipoxygenase of F. oxysporum and the structural basis for biosynthesis of distinct 11-hydroperoxy stereoisomers. J Lipid Res 56:1606–1615

    Article  CAS  PubMed  Google Scholar 

  15. Oliw EH (2008) Factors influencing the rearrangement of bis-allylic hydroperoxides by manganese lipoxygenase. J Lipid Res 49:420–428

    Article  CAS  PubMed  Google Scholar 

  16. Boutaud O, Brash AR (1999) Purification and catalytic activities of the two domains of the allene oxide synthase-lipoxygenase fusion protein of the coral Plexaura homomalla. J Biol Chem 274:33764–33770

    Article  CAS  PubMed  Google Scholar 

  17. Graff G, Anderson LA, Jaques LW (1990) Preparation and purification of soybean lipoxygenase-derived unsaturated hydroperoxy and hydroxy fatty acids and determination of molar absorptivities of hydroxy fatty acids. Anal Biochem 188:38–47

    Article  CAS  PubMed  Google Scholar 

  18. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  19. Newie J, Andreou A, Neumann P, Einsle O, Feussner I, Ficner R (2016) Crystal structure of a lipoxygenase from Cyanothece sp. may reveal novel features for substrate acquisition. J Lipid Res doi:10.1194/jlr.M064980

  20. Schilstra MJ, Veldink GA, Verhagen J, Vliegenthart JFG (1992) Effect of lipid hydroperoxide on lipoxygenase kinetics. Biochemistry 31:7692–7699

    Article  CAS  PubMed  Google Scholar 

  21. Schilstra MJ, Veldink GA, Vliegenthart JFG (1993) Kinetic analysis of the induction period in lipoxygenase catalysis. Biochemistry 32:7686–7691

    Article  CAS  PubMed  Google Scholar 

  22. Gaffney BJ, Mavrophilipos DV, Doctor KS (1993) Access of ligands to the ferric center in lipoxygenase-1. Biophys J 64:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slappendel S, Veldink GA, Vliegenthart JFG, Aasa R, Malmström BG (1981) EPR spectroscopy of soybean lipoxygenase-1. Biochim Biophys Acta 667:77–86

    Article  CAS  PubMed  Google Scholar 

  24. Oliw EH, Jernerén F, Hoffmann I, Sahlin M, Garscha U (2011) Manganese lipoxygenase oxidizes bis-allylic hydroperoxides and octadecenoic acids by different mechanisms. Biochim Biophys Acta 1811:138–147

    Article  CAS  PubMed  Google Scholar 

  25. Su C, Sahlin M, Oliw EH (2000) Kinetics of manganese lipoxygenase with a catalytic mononuclear redox center. J Biol Chem 275:18830–18835

    Article  CAS  PubMed  Google Scholar 

  26. Oliw E, Cristea M, Hamberg M (2004) Biosynthesis and isomerization of 11-hydroperoxy linoleates by manganese- and iron-dependent lipoxygenases. Lipids 39:319–323

    Article  CAS  PubMed  Google Scholar 

  27. Cristea M, Engstrom A, Su C, Hornsten L, Oliw EH (2005) Expression of manganese lipoxygenase in Pichia pastoris and site-directed mutagenesis of putative metal ligands. Arch Biochem Biophys 434:201–211

    Article  CAS  PubMed  Google Scholar 

  28. Dainese E, Angelucci CB, Sabatucci A, De Filippis V, Mei G, Maccarrone M (2010) A novel role for iron in modulating the activity and membrane-binding ability of a trimmed soybean lipoxygenase-1. FASEB J 24:1725–1736

    Article  CAS  PubMed  Google Scholar 

  29. Cotruvo JA Jr, Stubbe J (2012) Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 4:1020–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tu WY, Pohl S, Gray J, Robinson NJ, Harwood CR, Waldron KJ (2012) Cellular iron distribution in Bacillus anthracis. J Bacteriol 194:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dean JA (1985) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  32. Borgstahl GE, Pokross M, Chehab R, Sekher A, Snell EH (2000) Cryo-trapping the six-coordinate, distorted-octahedral active site of manganese superoxide dismutase. J Mol Biol 296:951–959

    Article  CAS  PubMed  Google Scholar 

  33. Lah MS, Dixon MM, Pattridge KA, Stallings WC, Fee JA, Ludwig ML (1995) Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry 34:1646–1660

    Article  CAS  PubMed  Google Scholar 

  34. Cristea M, Oliw EH (2007) On the singular, dual, and multiple positional specificity of manganese lipoxygenase and its G316A mutant. J Lipid Res 48:890–903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Uta Nüsse-Hahne and Dr. Dietrich Hertel for the ICP-AES measurements. We are grateful for financial support from the German Research Foundation (DFG) in frame of the International Research Training Group 1422, Metal Sites in Biomolecules: Structures, Regulation and Mechanisms. In addition, JN was supported by the Fonds of the Chemical Industry (FCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Feussner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 158 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newie, J., Kasanmascheff, M., Bennati, M. et al. Kinetics of Bis-Allylic Hydroperoxide Synthesis in the Iron-Containing Lipoxygenase 2 from Cyanothece and the Effects of Manganese Substitution. Lipids 51, 335–347 (2016). https://doi.org/10.1007/s11745-016-4127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4127-z

Keywords

Navigation