Skip to main content
Log in

Increased HDL Size and Enhanced Apo A-I Catabolic Rates Are Associated With Doxorubicin-Induced Proteinuria in New Zealand White Rabbits

  • Original Article
  • Published:
Lipids

Abstract

The catabolism and structure of high-density lipoproteins (HDL) may be the determining factor of their atheroprotective properties. To better understand the role of the kidney in HDL catabolism, here we characterized HDL subclasses and the catabolic rates of apo A-I in a rabbit model of proteinuria. Proteinuria was induced by intravenous administration of doxorubicin in New Zealand white rabbits (n = 10). HDL size and HDL subclass lipids were assessed by electrophoresis of the isolated lipoproteins. The catabolic rate of HDL-apo A-I was evaluated by exogenous radiolabelling with iodine-131. Doxorubicin induced significant proteinuria after 4 weeks (4.47 ± 0.55 vs. 0.30 ± 0.02 g/L of protein in urine, P < 0.001) associated with increased uremia, creatininemia, and cardiotoxicity. Large HDL2b augmented significantly during proteinuria, whereas small HDL3b and HDL3c decreased compared to basal conditions. HDL2b, HDL2a, and HDL3a subclasses were enriched with triacylglycerols in proteinuric animals as determined by the triacylglycerol-to-phospholipid ratio; the cholesterol content in HDL subclasses remained unchanged. The fractional catabolic rate (FCR) of [131I]-apo A-I in the proteinuric rabbits was faster (FCR = 0.036 h−1) compared to control rabbits group (FCR = 0.026 h−1, P < 0.05). Apo E increased and apo A-I decreased in HDL, whereas PON-1 activity increased in proteinuric rabbits. Proteinuria was associated with an increased number of large HDL2b particles and a decreased number of small HDL3b and 3c. Proteinuria was also connected to an alteration in HDL subclass lipids, apolipoprotein content of HDL, high paraoxonase-1 activity, and a rise in the fractional catabolic rate of the [131I]-apo A-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARE:

Arylesterase

CHD:

Coronary heart disease

FCR:

Fractional catabolic rate

HDL:

High-density lipoproteins

LPL:

Lipoprotein lipase

LVEF:

Left ventricular ejection fraction

PL:

Phospholipid

PON-1:

Paraoxonase-1

TAG:

Triacylglycerols

TC:

Total cholesterol

References

  1. Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Laupergue B, Burillo E, Michel JB, Levoye A, Martín-Ventura JL, Meilhac O (2013) HDL and endothelial protection. Br J Pharmacol 169:493–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee JY, Lanningham-Foster L, Boudyguina EY, Smith TL, Young ER, Colvin PL, Thomas MJ, Parks JS (2004) Prebeta-high density lipoprotein has two metabolic fates in human apolipoprotein AI transgenic mice. J Lipid Res 45:716–728

    Article  CAS  PubMed  Google Scholar 

  3. Castro GR, Fielding CJ (1988) Early incorporation of cell-derived cholesterol into pre-beta-migrating high density lipoprotein. Biochemistry 12:25–29

    Article  Google Scholar 

  4. Deakin S, Leaviev I, Gomaraschi M, Calabresi I, Franceschini G, James RW (2002) Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J Biol Chem 277:4301–4308

    Article  CAS  PubMed  Google Scholar 

  5. Kontush A, Chantepie S, Chapman MJ (2003) Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Throm Vasc Biol 23:1881–1888

    Article  CAS  Google Scholar 

  6. Pérez-Méndez O, Pacheco HG, Martínez-Sánchez C, Franco M (2014) HDL-cholesterol in coronary artery disease risk: function or structure? Clin Chim Acta 429:111–122

    Article  PubMed  Google Scholar 

  7. Toledo-Ibelles P, Franco M, Carreón-Torres E, Luc G, Tailleux A, Vargas-Alarcón G, Fragoso JM, Aguilar-Salinas C, Luna-Luna M, Pérez-Méndez O (2013) Normal HDL-apo AI turnover and cholesterol enrichment of HDL subclasses in New Zealand rabbits with partial nephrectomy. Metabolism 62:492–498

    Article  CAS  PubMed  Google Scholar 

  8. Graversen JH, Castro G, Kandoussi A, Nielsen H, Christensen EI, Norden A, Moestrup SK (2008) A pivotal role of the human kidney in catabolism of HDL protein components apolipoprotein AI and A-IV but not of A-II. Lipids 43:467–470

    Article  CAS  PubMed  Google Scholar 

  9. Kaysen GA (2009) Lipid and lipoprotein metabolism in chronic kidney disease. J Ren Nutr 19:73–77

    Article  CAS  PubMed  Google Scholar 

  10. Soto-Miranda E, Carreón-Torres E, Lorenzo K, Bazán-Salinas B, García-Sánchez C, Franco M, Posadas-Romero C, Fragoso JM, López-Olmos V, Madero M, Rodríguez-Pérez JM, Vargas-Alarcón G, Pérez-Méndez O (2012) Shift of high-density lipoprotein size distribution toward large particles in patients with proteinuria. Clin Chim Acta 414:241–245

    Article  CAS  PubMed  Google Scholar 

  11. Lamarche B, Uffelman KD, Steiner G, Barrett PH, Lewis GF (1998) Analysis of particle size and lipid composition as determinants of the metabolic clearance of human high density lipoprotein in a rabbits model. J Lipid Res 39:1162–1172

    CAS  PubMed  Google Scholar 

  12. Lewis GF, Lamarche B, Uffelman KD, Heatherigton AC, Honing MA, Szeto LW, Barrett PH (1997) Clearance of postprandial and lipolytically modified human HDL in rabbits and rats. J Lipid Res 38:1771–1778

    CAS  PubMed  Google Scholar 

  13. Kamgang R, Foyet AF, Essame JL, Ngogang JY (2012) Effect of methanolic fraction of Kalanchoe crenata on metabolic parameters in adriamycin-renal induced impairment in rats. Indian J Pharmacol 44:566–570

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khurana S, Bruggeman LA, Kao HY (2012) Nuclear hormone receptors in podocytes. Cell Biosci 2:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watanabe N, Kamei S, Ohkubo A, Yamanaka M, Ohsawa S, Makino K, Tokuda K (1986) Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin Chem 32:1551–1554

    CAS  PubMed  Google Scholar 

  16. Matsuo S, Fukatsu A, Taub ML, Caldwell PR, Brentjens JR, Andres G (1987) Glomerulonephritis induced in the rabbit by antiendothelial antibodies. J Clin Invest 79:1798–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huesca-Gómez C, Franco M, Luc G, Montaño LF, Massó F, Posadas-Romero C, Pérez-Méndez O (2002) Chronic hypothyroidism induces abnormal structure of high-density lipoproteins and impaired kinetics of apolipoprotein A-I in the rat. Metabolism 51:443–450

    Article  PubMed  Google Scholar 

  18. Toledo-Ibelles P, García-Sánchez C, Ávila-Vazzini N, Carreón-Torres E, Posadas-Romero C, Vargas-Alarcón G, Pérez-Méndez O (2010) Enzymatic assessment of cholesterol on electrophoresis gels for estimating HDL size distribution and plasma concentrations of HDL subclasses. J Lipid Res 51:1610–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. García-Sánchez C, Torres-Tamayo M, Juárez-Meavepeña M, López-Osorio C, Toledo-Ibelles P, Monter-Garrido M, Cruz-Robles D, Carreón-Torres E, Vargas-Alarcón G, Pérez-Méndez O (2011) Lipid plasma concentrations of HDL subclasses determined by enzymatic staining on polyacrylamide electrophoresis gels in children with metabolic syndrome. Clin Chim Acta 412:292–298

    Article  PubMed  Google Scholar 

  20. Juárez-Meavepeña M, Carreón-Torres E, López-Osorio C, García-Sánchez C, Gamboa R, Torres-Tamayo M, Fragoso JM, Rodríguez-Pérez JM, Vargas-Alarcón G, Pérez-Méndez O (2012) The Srb1 + 1050T allele is associated with metabolic syndrome concentrations of high-density lipoprotein subclasses. Metab Syndr Relat Disord 10:110–116

    Article  PubMed  Google Scholar 

  21. Williams PT, Krauss RM, Nichols AV, Vranizan KM, Wood PD (1990) Identifying the predominant peak diameter of high-density and low-density lipoproteins by electrophoresis. J Lipid Res 31:1131–1139

    CAS  PubMed  Google Scholar 

  22. Tailleux A, Torpier G, Caron B, Fruchart JC, Fievet C (1993) Immunological properties of apoB-containing lipoprotein particles in human atherosclerotic arteries. J Lipid Res 34:719–728

    CAS  PubMed  Google Scholar 

  23. Gan KN, Smolen A, Eckerson HW, La Du BN (1991) Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos 19:100–106

    CAS  PubMed  Google Scholar 

  24. Skutelsky E, Hartzan S, Socher R, Gafter U (1995) Modifications in glomerular polyanion distribution in adriamycin nephrosis. J Am Soc Nephrol 5:1799–1805

    CAS  PubMed  Google Scholar 

  25. He L, Hao L, Fu X, Huang M, Li R (2015) Severe hypertriglyceridemia and hypercholesterolemia accelerating renal injury: a novel model of type 1 diabetic hamsters induced by short-term high-fat/high-cholesterol diet and low-dose streptozotocin. BMC Nephrol 16:51

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aizawa K, Takeda S, Tashiro Y, Yorozu K, Hirata M, Kanada H, Moriguchi Y, Endo K (2012) Renoprotection by continuous erythropoietin receptor activator in puromycin aminonucleoside-induced nephrotic syndrome. Am J Nephrol 36:419–426

    Article  CAS  PubMed  Google Scholar 

  27. Bulum T, Kolaric B, Duvnjak L (2013) Lower levels of total HDL and HDL3 cholesterol are associated with albuminuria in normoalbuminuric type 1 diabetic patients. J Endocrinol Invest 36:574–578

    CAS  PubMed  Google Scholar 

  28. Kaysen GA, Hoye E, Jones H Jr (1995) Apolipoprotein AI levels are increased in part as a consequence of reduced catabolism in nephrotic rats. Am J Physiol 268:F532–F540

    CAS  PubMed  Google Scholar 

  29. Marsche G, Saemann MD, Heinemman A, Holzer M (2013) Inflammation alters HDL composition and function: implications for HDL-raising therapies. Pharmacol Ther 137:341–351

    Article  CAS  PubMed  Google Scholar 

  30. Festa A, Williams K, Hanley AJ, Otvos JD, Goff DC, Wagenknecht LE, Haffner SM (2005) Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation 111:3465–3472

    Article  PubMed  Google Scholar 

  31. Van der Steeg WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, Stroes ES, Tikkanen MJ, Wareham NJ, Faergeman O, Olsson AG, Pedersen TR, Khaw KT, Kastelein JJ (2008) High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPICNorfolk studies. J Am Coll Cardiol 51:634–642

    Article  PubMed  Google Scholar 

  32. Keane WF, Tomassini JE, Neff DR (2013) Lipid abnormalities in patients with chronic kidney disease: implications for the pathophysiology of atherosclerosis. J Atheroscler Thromb 20:123–133

    Article  CAS  PubMed  Google Scholar 

  33. Scarpioni R, Ricardi M, Albertazzi V, Melfa L (2012) Treatment of dyslipidemia in chronic kidney disease: effectiveness and safety of statins. World J Nephrol 1:184–194

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saku K, Mendoza SG, Laver M, Hynd BA, Gartside PS, Kashyap ML (1988) High-density lipoprotein apolipoprotein AI and AII turnover in moderate and severe proteinuria. Nephron 50:112–115

    Article  CAS  PubMed  Google Scholar 

  35. Vaziri ND (2003) Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int 63:1964–1976

    Article  PubMed  Google Scholar 

  36. Elkhalil L, Majd Z, Bakir R, Perez-Mendez O, Castro G, Poulain P, Lacroix B, Duhal N, Fruchart JC, Luc G (1997) Fish-eye disease: structural and in vivo metabolic abnormalities of high-density lipoproteins. Metabolism 46:474–483

    Article  CAS  PubMed  Google Scholar 

  37. Carreón-Torres E, Rendón-Sauer K, Monter-Garrido M, Toledo-Ibelles P, Gamboa R, Menjivar M, López-Marure R, Luc G, Fievet C, Cruz D, Vargas-Alarcón G, Pérez-Méndez O (2009) Rosiglitazone modifies HDL structure and increases HDL-apo AI synthesis and catabolic rates. Clin Chim Acta 401:37–41

    Article  PubMed  Google Scholar 

  38. Razavi AE, Ani M, Pourfarzam M, Naderi GA (2012) Associations between high density lipoprotein mean particle size and serum paraoxonase-1 activity. J Res Med Sci 17:1020–1026

    PubMed  PubMed Central  Google Scholar 

  39. Gugliucci A, Caccavello R, Kotani K, Sakane N, Kimura S (2013) Enzymatic assessment of paraoxonase 1 activity on HDL subclasses: a practical zymogram method to assess HDL function. Clin Chim Acta 415:162–168

    Article  CAS  PubMed  Google Scholar 

  40. Kennedy DJ, Tang WH, Fan Y, Wu Y, Mann S, Pepoy M, Hazen SL (2013) Diminished antioxidant activity of high-density lipoprotein-associated proteins in chronic kidney disease. J Am Heart Assoc 2:e000104

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kashyap ML, Srivastava LS, Hynd BA, Brady D, Perisutti G, Glueck CJ, Gartside PS (1980) Apolipoprotein CII and lipoprotein lipase in human nephrotic syndrome. Atherosclerosis 35:29–40

    Article  CAS  PubMed  Google Scholar 

  42. Yamada M, Matsuda I (1970) Lipoprotein lipase in clinical and experimental nephrosis. Clin Chim Acta 30:787–794

    Article  CAS  PubMed  Google Scholar 

  43. Hirano T, Ebara T, Furukawa S, Nagano S, Takahashi T (1994) Mechanism of hypertriglyceridemia in Dahl salt-sensitive rats, an animal model of spontaneous nephrotic syndrome. Metabolism 43:248–256

    Article  CAS  PubMed  Google Scholar 

  44. Pérez-Méndez O, Alvarez-Salcedo P, Carreón-Torres E, Luc G, Arce Fonseca M, de la Peña A, Cruz Robles D, García JJ, Vargas-Alarcón G (2007) Palmitic acid in HDL is associated to low apo A-I fractional catabolic rates in vivo. Clin Chim Acta 78:53–58

    Article  Google Scholar 

  45. Pérez-Méndez O, Carreón-Torres E, Franco M, Juárez-Oropeza MA (2009) HDL physicochemical characteristics as determinants of their plasma concentrations: what we have learned from thiazolidinediones. In: Pagano IS (ed) HDL and LDL cholesterol: physiology and clinical significance. Strait NB Nova Science, New York

    Google Scholar 

  46. Okubo K, Ikewaki K, Sakai S, Tada N, Kawaguchi Y, Mochizuki S (2004) Abnormal HDL apolipoprotein A-I and A-II kinetics in hemodialysis patients: a stable isotope study. J Am Soc Nephrol 15:1008–1015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a CONACYT Grant No. 132473. We are grateful to Rodrigo Velázquez Espejel for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Pérez-Méndez.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Olmos, V., Carreón-Torres, E., Luna-Luna, M. et al. Increased HDL Size and Enhanced Apo A-I Catabolic Rates Are Associated With Doxorubicin-Induced Proteinuria in New Zealand White Rabbits. Lipids 51, 311–320 (2016). https://doi.org/10.1007/s11745-016-4120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4120-6

Keywords

Navigation