Skip to main content
Log in

Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice

  • Original Article
  • Published:
Lipids

Abstract

C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-14C]16:0, [1-14C]20:4n-6, or [1-14C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-14C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-14C]16:0 and [1-14C]22:6n-3 were not different between groups. In heart, uptake of [1-14C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-14C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-14C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-14C]16:0 and [1-14C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-14C]16:0 and 44 and 52 % decrease in [1-14C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-14C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SW:

Swiss Webster

TAG:

Triacylglycerol(s)

FFA:

Free fatty acids

DAG:

Diacylglycerol(s)

Ptd2Gro:

Cardiolipin

EtnGpl:

Ethanolamine glycerophospholipids

PtsIns:

Phosphatidylinositol

PtdSer:

Phosphatidylserine

ChoGpl:

Choline glycerophospholipids

CerPCho:

Sphingomyelin

16:0:

Palmitic acid

20:4n-6:

Arachidonic acid

22:6n-3:

Docosahexaenoic acid

Acox1:

Acyl-CoA oxidase 1

FABP:

Fatty acid binding protein

References

  1. Goren HJ, Kulkarni RN, Kahn CR (2004) Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology 145:3307–3323

    Article  CAS  PubMed  Google Scholar 

  2. Berglund E, Li C, Poffenberger G, Ayala J (2008) Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 57:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andrikopoulos S, Massa CM, Aston-Mourney K, Funkat A, Fam BC, Hull RL, Kahn SE, Proietto J (2005) Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129T2) on insulin secretory function in response to a high fat diet. J Endocrinol 187:45–53

    Article  CAS  PubMed  Google Scholar 

  4. Haramizu S, Nagasawa A, Ota N, Hase T, Tokimitsu I, Murase T (2009) Different contribution of muscle and liver lipid metabolism to endurance capacity and obesity susceptibility of mice. J Appl Physiol 106:871–879

    Article  CAS  PubMed  Google Scholar 

  5. Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56:1129–1139

    Article  CAS  PubMed  Google Scholar 

  6. Rendina-Ruedy E, Hembree KD, Sasaki A, Davis MR, Lightfoot SA, Clarke SL, Lucas EA, Smith BJ (2015) A comparative study of the metabolic and skeletal response of C57BL/6J and C57BL/6N mice in a diet-induced model of type 2 diabetes. J Nutr Metab 2015:1–13

    Article  Google Scholar 

  7. Haluzik M, Colombo C, Gavrilova O, Chua S, Wolf N, Chen M, Stannard B, Dietz KR, Le Roith D, Reitman ML (2004) Genetic background (C57BL/6J versus FVB/N) strongly influences the severity of diabetes and insulin resistance in ob/ob mice. Endocrinology 145:3258–3264

    Article  CAS  PubMed  Google Scholar 

  8. Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A (2009) Genetic differences among C57BL/6 substrains. Exp Anim 58:141–149

    Article  CAS  PubMed  Google Scholar 

  9. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27

    Article  CAS  PubMed  Google Scholar 

  10. Myers-Payne SC, Hubbell T, Pu L, Schnütgen F, Börchers T, Wood WG, Spener F, Schroeder F (1996) Isolation and characterization of two fatty acid binding proteins from mouse brain. J Neurochem 66:1648–1656

    Article  CAS  PubMed  Google Scholar 

  11. Balogun KA, Albert CJ, Ford DA, Brown RJ, Cheema SK (2013) Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach. PLoS One 8:1–16

    Article  Google Scholar 

  12. Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, Hu X, Sun B, Cao G, Gao Y, Xu Y, Chen J, Zhang F (2014) Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 34:1903–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim SN, Gladman SJ, Dyall SC, Patel U, Virani N, Kang JX, Priestley JV, Michael-Titus AT (2013) Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis 51:104–112

    Article  CAS  PubMed  Google Scholar 

  14. Vaillant F, Lauzier B, Poirier I, Gélinas R, Rivard M-E, Robillard Frayne I, Thorin E, Des Rosiers C (2014) Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am J Physiol Heart Circ Physiol 306:H78–H87

    Article  CAS  PubMed  Google Scholar 

  15. Kennedy BP, Payette P, Mudgett J, Vadas P, Pruzanski W, Kwan M, Tang C, Rancourt DE, Cromlish WA (1995) A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J Biol Chem 270:22378–22385

    Article  CAS  PubMed  Google Scholar 

  16. Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214

    Article  CAS  PubMed  Google Scholar 

  17. Golovko MY, Faergeman NJ, Cole NB, Castagnet PI, Nussbaum RL, Murphy EJ (2005) Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding. Biochemistry 44:8251–8259

    Article  CAS  PubMed  Google Scholar 

  18. Murphy EJ, Barcelo-Coblijn G, Binas B, Glatz JFC (2004) Heart fatty acid uptake is decreased in heart fatty acid-binding protein gene-ablated mice. J Biol Chem 279:34481–34488

    Article  CAS  PubMed  Google Scholar 

  19. Murphy EJ, Rosenberger TA, Patrick CB, Rapoport SI (2000) Intravenously injected [1-14C]arachidonic acid targets phospholipids, and [1-14C]palmitic acid targets neutral lipids in hearts of awake rats. Lipids 35:891–898

    Article  CAS  PubMed  Google Scholar 

  20. Murphy EJ (2010) Brain fixation for analysis of brain lipid-mediators of signal transduction and brain eicosanoids requires head-focused microwave irradiation: an historical perspective. Prostaglandins Other Lipid Mediat 91:63–67

    Article  CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  22. Murphy CC, Murphy EJ, Golovko MY (2008) Erucic acid is differentially taken up and metabolized in rat liver and heart. Lipids 43:391–400

    Article  CAS  PubMed  Google Scholar 

  23. Smith BS (1970) A comparison of 125-I and 51-Cr for measurement of total blood volume and residual blood content of tissues in the rat; evidence for accumulation of 51-Cr by tissues. Clin Chim Acta 27:105–108

    Article  CAS  PubMed  Google Scholar 

  24. Regoeczi E, Taylor P (1978) The net weight of the rat liver. Growth 42:451–456

    CAS  PubMed  Google Scholar 

  25. Rosenberger TA, Oki J, Purdon AD, Rapoport SI, Murphy EJ (2002) Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J Lipid Res 43:59–68

    CAS  PubMed  Google Scholar 

  26. Rosenberger TA, Villacreses NE, Contreras MA, Bonventre JV, Rapoport SI (2003) Brain lipid metabolism in the cPLA2 knockout mouse. J Lipid Res 44:109–117

    Article  CAS  PubMed  Google Scholar 

  27. Marcheselli BL, Scott VL, Reddy TS, Bazan NG (1988) Quantitative analysis of acyl group composition of brain phospholipids, neutral lipids, and free fatty acids. In: Boulton AA, Baker GB, Horrocks LA (eds) Lipids and Related Compouinds, Neuromethods, vol 7. Humana Press, Clifton, NJ, pp 83–110

  28. Jolly CA, Hubbell T, Behnke WD, Schroeder F (1997) Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation. Arch Biochem Biophys 341:112–121

    Article  CAS  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  30. Murphy EJ, Horrocks LA (1993) A model for compression trauma: pressure-induced injury in cell cultures. J Neurotrauma 10:431–444

    Article  CAS  PubMed  Google Scholar 

  31. Gnaedinger JM, Miller JC, Latker CH, Rapoport SI (1988) Cerebral metabolism of plasma [14C]palmitate in awake, adult rat: subcellular localization. Neurochem Res 13:21–29

    Article  CAS  PubMed  Google Scholar 

  32. Miller JC, Gnaedinger JM, Rapoport SI (1987) Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways. J Neurochem 49:1507–1514

    Article  CAS  PubMed  Google Scholar 

  33. MacAvoy SE, Lazaroff S, Kraeer K, Arneson LS (2012) Sex and strain differences in isotope turnover rates and metabolism in house mice (Mus musculus). Can J Zool Can Zool 90:984–990

    Article  CAS  Google Scholar 

  34. Chia R, Achilli F, Festing MFW, Fisher EMC (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186

    Article  CAS  PubMed  Google Scholar 

  35. Jolly CA, Jiang YH, Chapkin RS, McMurray DN (1997) Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J Nutr 127:37–43

    CAS  PubMed  Google Scholar 

  36. Zimring JC, Smith N, Stowell SR, Johnsen JM, Bell LN, Francis RO, Hod EA, Hendrickson JE, Roback JD, Spitalnik SL (2014) Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model. Transfusion 54:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wheelock CE, Forshed J, Goto S, Hammock BD, Newman JW (2008) Effects of pyridine exposure upon structural lipid metabolism in Swiss Webster mice. Chem Res Toxicol 21:583–590

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Lim CY, Su MYF, Soh SLY, Shui G, Wenk MR, Grove KL, Radda GK, Han W, Xiao X (2013) Neonatal overnutrition in mice exacerbates high-fat diet-induced metabolic perturbations. J Endocrinol 219:131–143

    Article  CAS  PubMed  Google Scholar 

  39. Glavas MM, Kirigiti MA, Xiao XQ, Enriori PJ, Fisher SK, Evans AE, Grayson BE, Cowley MA, Smith MS, Grove KL (2010) Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology 151:1598–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glatz JF, van der Vusse GJ (1989) Intracellular transport of lipids. Mol Cell Biochem 88:37–44

    Article  CAS  PubMed  Google Scholar 

  41. Zschiesche W, Kleine AH, Spitzer E, Veerkamp JH, Glatz JF (1995) Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues. Histochem Cell Biol 103:147–156

    Article  CAS  PubMed  Google Scholar 

  42. Patrick CB, McHowat J, Rosenberger TA, Rapoport SI, Murphy EJ (2005) Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart. Am J Physiol Heart Circ Physiol 288:H2611–H2619

    Article  CAS  PubMed  Google Scholar 

  43. Degrella RF, Light RJ (1980) Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. J Biol Chem 255:9731–9738

    CAS  PubMed  Google Scholar 

  44. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM (1995) The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of ApcMin-induced intestinal neoplasia. Cell 81:957–966

    Article  CAS  PubMed  Google Scholar 

  45. Lambeau G, Ancian P, Nicolas J-P, Beiboer SHW, Moinier D, Verheij H, Lazdunski M (1995) Structural elements of secretory phospholipases A2 involved in the binding to M-type receptors. J Biol Chem 270:5534–5540

    Article  CAS  PubMed  Google Scholar 

  46. Fukagawa T, Nose T, Shimohigashi Y, Ogawa T, Oda N, Nakashima K, Chang CC, Ohno M (1993) Purification, sequencing and characterization of single amino acid-substituted phospholipase A2 isozymes from Trimeresurus gramineus (green habu snake) venom. Toxicon 31:957–967

    Article  CAS  PubMed  Google Scholar 

  47. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta Mol Cell Biol Lipids 1488:1–19

    Article  CAS  Google Scholar 

  48. Murakami M, Kudo I (2002) Phospholipase A2. J Biochem 131:285–292

    Article  CAS  PubMed  Google Scholar 

  49. Mounier CM, Ghomashchi F, Lindsay MR, James S, Singer AG, Parton RG, Gelb MH (2004) Arachidonic acid release from mammalian cells transfected with human groups IIA and X secreted phospholipase A2 occurs predominantly during the secretory process and with the involvement of cytosolic phospholipase A2-α. J Biol Chem 279:25024–25038

    Article  CAS  PubMed  Google Scholar 

  50. Murakami M, Taketomi Y, Sato H, Yamamoto K (2011) Secreted phospholipase A2 revisited. J Biochem 150:233–255

    Article  CAS  PubMed  Google Scholar 

  51. With C, Phospholipase C, Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA, Kudo I (1998) The functions of five distinct mammalian phospholipase A 2s in regulating arachidonic acid release. Biochemistry 273:14411–14423

    Google Scholar 

  52. Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH (2002) Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2. J Biol Chem 277:48535–48549

    Article  CAS  PubMed  Google Scholar 

  53. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167

    Article  CAS  PubMed  Google Scholar 

  54. Black BL, Croom J, Eisen EJ, Petro AE, Edwards CL, Surwit RS (1998) Differential effects of fat and sucrose on body composition in A/J and C57BL/6 mice. Metabolism 47:1354–1359

    Article  CAS  PubMed  Google Scholar 

  55. Toye AA, Lippiat JD, Proks P, Shimomura K, Bentley L, Hugill A, Mijat V, Goldsworthy M, Moir L, Haynes A, Quarterman J, Freeman HC, Ashcroft FM, Cox RD (2005) A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48:675–686

    Article  CAS  PubMed  Google Scholar 

  56. Toye AA, Dumas ME, Blancher C, Rothwell AR, Fearnside JF, Wilder SP, Bihoreau MT, Cloarec O, Azzouzi I, Young S, Barton RH, Holmes E, McCarthy MI, Tatoud R, Nicholson JK, Scott J, Gauguier D (2007) Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice. Diabetologia 50:1867–1879

    Article  CAS  PubMed  Google Scholar 

  57. Liu SJ, McHowat J (1998) Stimulation of different phospholipase A2 isoforms by TNF-alpha and IL-1beta in adult rat ventricular myocytes. Am J Physiol 275:H1462–H1472

    CAS  PubMed  Google Scholar 

  58. McHowat J, Liu S (1997) Interleukin-1beta stimulates phospholipase A2 activity in adult rat ventricular myocytes. Am J Physiol 272:C450–C456

    CAS  PubMed  Google Scholar 

  59. McHowat J, Creer MH (2001) Comparative roles of phospholipase A2 isoforms in cardiovascular pathophysiology. Cardiovasc Toxicol 1:253–265

    Article  CAS  PubMed  Google Scholar 

  60. Steer SA, Wirsig KC, Creer MH, Ford DA, McHowat J (2002) Regulation of membrane-associated iPLA2 activity by a novel PKC isoform in ventricular myocytes. Am J Physiol Cell Physiol 283:C1621–C1626

    Article  CAS  PubMed  Google Scholar 

  61. Pavoine C, Magne S, Sauvadet A, Pecker F (1999) Evidence for a beta2-adrenergic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the beta1-adrenergic/camp pathway. J Biol Chem 274:628–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carole Haselton for excellent surgical and technical skills that contributed to this work. This work was supported by a grant to EJM by the American Heart Association (0151121Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Murphy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeger, D.R., Murphy, E.J. Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice. Lipids 51, 549–560 (2016). https://doi.org/10.1007/s11745-015-4117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4117-6

Keywords

Navigation