, Volume 51, Issue 2, pp 159–178 | Cite as

Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism

  • Yoo Kim
  • Jonggun Kim
  • Kwang-Youn Whang
  • Yeonhwa ParkEmail author


Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.


CLA Conjugated linoleic acid Skeletal muscle metabolism Obesity Lean body mass Physical activity 



Acetyl-CoA carboxylase


AMP-activated protein kinase


Basic metabolic rate


Conjugated linoleic acid


Carnitine palmitoyltransferase


Estrogen-related receptor


Forkhead box O


Glucose transporter type 4


Interleukin 6


Lipoprotein lipase


Myocyte enhancer factor 2


Myosin heavy chain


Nuclear factor kappa-light-chain-enhancer of activated B cells


Nuclear respiratory factor


Peroxisome proliferator-activated receptor γ coactivator 1α


Peroxisome proliferator-activated receptor δ


Resting metabolic rate


Silent information regulator two protein 1




Tumor necrosis factor α


Uncoupling protein



The authors thank Ms. Jayne M. Storkson for help preparing this manuscript and Dr. Deborah J. Good at the Virginia Polytechnic Institute and State University for providing Nhlh-2 knockout animals. This material is based on work supported in part by the National Institute of Food and Agriculture, U.S. Department of Agriculture, the Massachusetts Agricultural Experimental Station, and the Department of Food Science under Project No. MAS00998 and MAS00450. Yoo Kim was supported in part by the Charm Sciences scholarship from the Department of Food Science, University of Massachusetts, Amherst. Dr. Yeonhwa Park is one of the inventors of CLA use patents assigned to the Wisconsin Alumni Research Foundation.


  1. 1.
    Parodi PW (1999) Conjugated linoleic acid: the early years. In: Yurawecz MP, Mossoba MM, Kramer JKG, Pariza MW, Nelson GJ (eds) Advances in conjugated linoleic acid research. AOCS Press, UrbanaGoogle Scholar
  2. 2.
    Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J Biol Chem 241(6):1350–1354PubMedGoogle Scholar
  3. 3.
    Kay JK, Mackle TR, Auldist MJ, Thomson NA, Bauman DE (2004) Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. J Dairy Sci 87(2):369–378PubMedCrossRefGoogle Scholar
  4. 4.
    Chin S, Liu W, Storkson J, Ha Y, Pariza M (1992) Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J Food Compos Anal 5(3):185–197CrossRefGoogle Scholar
  5. 5.
    Park Y (2014) Chapter 37—Conjugated linoleic acid in human health effects on weight control. In: Watson RR (ed) Nutrition in the prevention and treatment of abdominal obesity. Academic Press, DublinGoogle Scholar
  6. 6.
    Zlatanos SN, Laskaridis K, Sagredos A (2008) Conjugated linoleic acid content of human plasma. Lipids Health Dis 7:34. doi: 10.1186/1476-511X-7-34 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mele MC, Cannelli G, Carta G, Cordeddu L, Melis MP, Murru E, Stanton C, Banni S (2013) Metabolism of c9 t11-conjugated linoleic acid (CLA) in humans. Prostaglandins Leukot Essent Fat Acids (PLEFA) 89(2):115–119CrossRefGoogle Scholar
  8. 8.
    Dilzer A, Park Y (2012) Implication of conjugated linoleic acid (CLA) in human health. Crit Rev Food Sci Nutr 52(6):488–513PubMedCrossRefGoogle Scholar
  9. 9.
    Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17(12):789–810PubMedCrossRefGoogle Scholar
  10. 10.
    Wahle KW, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43(6):553–587PubMedCrossRefGoogle Scholar
  11. 11.
    US Food and Drug Administration (2015) Nutrition labeling: Trans Fat Labeling. Accessed 26 Aug 2015
  12. 12.
    Park Y, Albright K, Liu W, Storkson J, Cook M, Pariza M (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32(8):853–858PubMedCrossRefGoogle Scholar
  13. 13.
    McCrorie TA, Keaveney EM, Wallace JM, Binns N, Livingstone MBE (2011) Human health effects of conjugated linoleic acid from milk and supplements. Nutr Res Rev 24(02):206–227PubMedCrossRefGoogle Scholar
  14. 14.
    Park Y (2009) Conjugated linoleic acid (CLA): good or bad trans fat? J Food Compos Anal 22:S4–S12CrossRefGoogle Scholar
  15. 15.
    Pariza M (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79(6):1132S–1136SPubMedGoogle Scholar
  16. 16.
    Park Y, Pariza MW (2007) Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res Int 40(3):311–323CrossRefGoogle Scholar
  17. 17.
    Kennedy A, Martinez K, Schmidt S, Mandrup S, LaPoint K, McIntosh M (2010) Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem 21(3):171–179PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Park Y, Storkson J, Albright K, Liu W, Pariza M (1999) Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34(3):235–241PubMedCrossRefGoogle Scholar
  19. 19.
    Rahman MM, Halade GV, El Jamali A, Fernandes G (2009) Conjugated linoleic acid (CLA) prevents age-associated skeletal muscle loss. Biochem Biophys Res Commun 383(4):513–518PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Halade GV, Rahman MM, Fernandes G (2010) Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice. J Nutr Biochem 21(4):332–337PubMedCrossRefGoogle Scholar
  21. 21.
    Kim JH, Kim J, Park Y (2012) trans-10, cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice. Lipids 47(9):855–863PubMedCrossRefGoogle Scholar
  22. 22.
    Stangl GI (2000) Conjugated linoleic acids exhibit a strong fat-to-lean partitioning effect, reduce serum VLDL lipids and redistribute tissue lipids in food-restricted rats. J Nutr 130(5):1140–1146PubMedGoogle Scholar
  23. 23.
    Dugan M, Aalhus J, Schaefer A, Kramer J (1997) The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs 77(4):723–725Google Scholar
  24. 24.
    Dugan M, Aalhus J, Jeremiah L, Kramer J, Schaefer A (1999) The effects of feeding conjugated linoleic acid on subsequent pork quality 79(1):45–51Google Scholar
  25. 25.
    Dunshea F, Ostrowska E, Muralitharan M, Cross R, Bauman D, Pariza M, Skarie C (1998) Dietary conjugated linoleic acid decreases back fat in finisher gilts. J Anim Sci 76(Suppl 1):131Google Scholar
  26. 26.
    Tischendorf F, Schöne F, Möckel P, Jahreis G (1999) The effect of conjugated linoleic acid on porcine growth, body composition, and fatty acids distribution in backfat, muscle and liver. In: Symposium Vitamine und Zusatzstoffe in der Ernährung von Mensch und Tier, pp 244–249Google Scholar
  27. 27.
    Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR (1999) Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 129(11):2037–2042PubMedGoogle Scholar
  28. 28.
    Kamphuis MM, Lejeune MP, Saris WH, Westerterp-Plantenga MS (2003) The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int J Obes 27(7):840–847CrossRefGoogle Scholar
  29. 29.
    Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O (2004) Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr 79(6):1118–1125PubMedGoogle Scholar
  30. 30.
    Gaullier J, Halse J, Høivik HO, Høye K, Syvertsen C, Nurminiemi M, Hassfeld C, Einerhand A, O’Shea M, Gudmundsen O (2007) Six months supplementation with conjugated linoleic acid induces regional-specific fat mass decreases in overweight and obese. Br J Nutr 97(03):550–560PubMedCrossRefGoogle Scholar
  31. 31.
    Raff M, Tholstrup T, Toubro S, Bruun JM, Lund P, Straarup EM, Christensen R, Sandberg MB, Mandrup S (2009) Conjugated linoleic acids reduce body fat in healthy postmenopausal women. J Nutr 139(7):1347–1352PubMedCrossRefGoogle Scholar
  32. 32.
    Racine NM, Watras AC, Carrel AL, Allen DB, McVean JJ, Clark RR, O’Brien AR, O’Shea M, Scott CE, Schoeller DA (2010) Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am J Clin Nutr 91(5):1157–1164PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Steck SE, Chalecki AM, Miller P, Conway J, Austin GL, Hardin JW, Albright CD, Thuillier P (2007) Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. J Nutr 137(5):1188–1193PubMedGoogle Scholar
  34. 34.
    Sneddon AA, Tsofliou F, Fyfe CL, Matheson I, Jackson DM, Horgan G, Winzell MS, Wahle KWJ, Ahren B, Williams LM (2008) Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity 16(5):1019–1024PubMedCrossRefGoogle Scholar
  35. 35.
    Schoeller DA, Watras AC, Whigham LD (2009) A meta-analysis of the effects of conjugated linoleic acid on fat-free mass in humans. Appl Physiol, Nutr, Metab 34(5):975–978CrossRefGoogle Scholar
  36. 36.
    Park Y, Albright KJ, Storkson JM, Liu W, Cook ME, Pariza MW (1999) Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids 34(3):243–248PubMedCrossRefGoogle Scholar
  37. 37.
    Pariza M, Park Y, Cook M (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40(4):283–298PubMedCrossRefGoogle Scholar
  38. 38.
    Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid—improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50(5):1149–1157PubMedCrossRefGoogle Scholar
  39. 39.
    Gudbrandsen OA, Rodriguez E, Wergedahl H, Mørk S, Reseland JE, Skorve J, Palou A, Berge RK (2009) Trans-10, cis-12-conjugated linoleic acid reduces the hepatic triacylglycerol content and the leptin mRNA level in adipose tissue in obese Zucker fa/fa rats. Br J Nutr 102(06):803–815PubMedCrossRefGoogle Scholar
  40. 40.
    Choi JS, Jung MH, Park HS, Song J (2004) Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat–fed rats. Nutrition 20(11):1008–1017PubMedCrossRefGoogle Scholar
  41. 41.
    Inoue N, Nagao K, Wang Y, Noguchi H, Shirouchi B, Yanagita T (2006) Dietary conjugated linoleic acid lowered tumor necrosis factor-α content and altered expression of genes related to lipid metabolism and insulin sensitivity in the skeletal muscle of Zucker rats. J Agric Food Chem 54(20):7935–7939PubMedCrossRefGoogle Scholar
  42. 42.
    Park Y, Albright KJ, Storkson JM, Liu W, Pariza MW (2010) Effects of dietary conjugated linoleic acid (CLA) on spontaneously hypertensive rats. J Funct Foods 2(1):54–59CrossRefGoogle Scholar
  43. 43.
    Mirand PP, Mosoni L, Arnal-Bagnard M, Faulconnier Y, Chardigny J, Chilliard Y (2006) Dietary conjugated linoleic acid has limited effects on tissue protein anabolism in sedentary and exercising adult rats 46(6):621–632Google Scholar
  44. 44.
    Park Y, Albright K, Storkson J, Liu W, Pariza M (2007) Conjugated linoleic acid (CLA) prevents body fat accumulation and weight gain in an animal model. J Food Sci 72(8):S612–S617PubMedCrossRefGoogle Scholar
  45. 45.
    Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O (2005) Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr 135(4):778–784PubMedGoogle Scholar
  46. 46.
    Cornish SM, Candow DG, Jantz NT, Chilibeck PD, Little JP, Forbes S, Abeysekara S, Zello GA (2009) Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr 19(1):79Google Scholar
  47. 47.
    Malpuech-Brugère C, de Venne Verboeket-van, Wilhelmine PHG, Mensink RP, Arnal M, Morio B, Brandolini M, Saebo A, Lassel TS, Chardigny JM, Sébédio JL (2004) Effects of two conjugated linoleic acid isomers on body fat mass in overweight humans. Obes Res 12(4):591–598PubMedCrossRefGoogle Scholar
  48. 48.
    Watras A, Buchholz A, Close R, Zhang Z, Schoeller D (2006) The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int J Obes 31(3):481–487CrossRefGoogle Scholar
  49. 49.
    Thrush AB, Chabowski A, Heigenhauser GJ, McBride BW, Or-Rashid M, Dyck DJ (2007) Conjugated linoleic acid increases skeletal muscle ceramide content and decreases insulin sensitivity in overweight, non-diabetic humans. Appl Physiol, Nutr, Metab 32(3):372–382CrossRefGoogle Scholar
  50. 50.
    Dhurandhar NV, Schoeller DA, Brown AW, Heymsfield SB, Thomas D, Sorensen TI, Speakman JR, Jeansonne M, Allison DB, Energy Balance Measurement Working Group (2015) Response to ‘Energy balance measurement: when something is not better than nothing’. Int J Obes (Lond) 39(7):1175–1176CrossRefGoogle Scholar
  51. 51.
    West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275(3 Pt 2):R667–R672PubMedGoogle Scholar
  52. 52.
    West DB, Blohm FY, Truett AA, DeLany JP (2000) Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 130(10):2471–2477PubMedGoogle Scholar
  53. 53.
    Ohnuki K, Haramizu S, Ishihara K, Fushiki T (2001) Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid. Biosci Biotechnol Biochem 65(10):2200–2204PubMedCrossRefGoogle Scholar
  54. 54.
    Ohnuki K, Haramizu S, Oki K, Ishihara K, Fushiki T (2001) A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice. Lipids 36(6):583–587PubMedCrossRefGoogle Scholar
  55. 55.
    Park Y, Park Y (2010) Conjugated nonadecadienoic acid is more potent than conjugated linoleic acid on body fat reduction. J Nutr Biochem 21(8):764–773PubMedCrossRefGoogle Scholar
  56. 56.
    Park Y, Park Y (2012) Conjugated fatty acids increase energy expenditure in part by increasing voluntary movement in mice. Food Chem 133(2):400–409PubMedCrossRefGoogle Scholar
  57. 57.
    Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O’Shea M, Fernandes G (2005) The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice. J Nutr 135(5):1124–1130PubMedGoogle Scholar
  58. 58.
    Nagao K, Wang Y, Inoue N, Han S, Buang Y, Noda T, Kouda N, Okamatsu H, Yanagita T (2003) The 10trans, 12cis isomer of conjugated linoleic acid promotes energy metabolism in OLETF rats. Nutrition 19(7):652–656PubMedCrossRefGoogle Scholar
  59. 59.
    Nazare J, Perrière, de la AB, Bonnet F, Desage M, Peyrat J, Maitrepierre C, Louche-Pelissier C, Bruzeau J, Goudable J, Lassel T (2007) Daily intake of conjugated linoleic acid-enriched yoghurts: effects on energy metabolism and adipose tissue gene expression in healthy subjects. Br J Nutr 97(02):273–280PubMedCrossRefGoogle Scholar
  60. 60.
    Close RN, Schoeller DA, Watras AC, Nora EH (2007) Conjugated linoleic acid supplementation alters the 6-mo change in fat oxidation during sleep. Am J Clin Nutr 86(3):797–804PubMedGoogle Scholar
  61. 61.
    Pinkoski C, Chilibeck PD, Candow DG, Esliger D, Ewaschuk JB, Facci M, Farthing JP, Zello GA (2006) The effects of conjugated linoleic acid supplementation during resistance training. Med Sci Sports Exerc 38(2):339PubMedCrossRefGoogle Scholar
  62. 62.
    Lambert EV, Goedecke JH, Bluett K, Heggie K, Claassen A, Rae DE, West S, Dugas J, Dugas L, Meltzer S (2007) Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals. Br J Nutr 97(05):1001–1011PubMedCrossRefGoogle Scholar
  63. 63.
    Zambell KL, Keim NL, Van Loan MD, Gale B, Benito P, Kelley DS, Nelson GJ (2000) Conjugated linoleic acid supplementation in humans: effects on body composition and energy expenditure. Lipids 35(7):777–782PubMedCrossRefGoogle Scholar
  64. 64.
    Ealey K, El-Sohemy A, Archer M (2002) Effects of dietary conjugated linoleic acid on the expression of uncoupling proteins in mice and rats. Lipids 37(9):853–861PubMedCrossRefGoogle Scholar
  65. 65.
    Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49(9):1534–1542PubMedCrossRefGoogle Scholar
  66. 66.
    Choi JS, Koh I, Jung MH, Song J (2007) Effects of three different conjugated linoleic acid preparations on insulin signalling, fat oxidation and mitochondrial function in rats fed a high-fat diet. Br J Nutr 98(2):264–275PubMedCrossRefGoogle Scholar
  67. 67.
    Adams S, Pan G, Yu X (2001) Perspectives on the biology of uncoupling protein (UCP) homologues. Biochem Soc Trans 29(5):100CrossRefGoogle Scholar
  68. 68.
    Mizunoya W, Haramizu S, Shibakusa T, Okabe Y, Fushiki T (2005) Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise. Lipids 40(3):265–271PubMedCrossRefGoogle Scholar
  69. 69.
    Tsao J, Liao S, Korivi M, Hou C, Kuo C, Wang H, Cheng I (2014) Oral conjugated linoleic acid supplementation enhanced glycogen resynthesis in exercised human skeletal muscle. J Sports Sci (ahead-of-print):1–9Google Scholar
  70. 70.
    Bouthegourd JC, Even PC, Gripois D, Tiffon B, Blouquit MF, Roseau S, Lutton C, Tome D, Martin JC (2002) A CLA mixture prevents body triglyceride accumulation without affecting energy expenditure in Syrian hamsters. J Nutr 132(9):2682–2689PubMedGoogle Scholar
  71. 71.
    Degrace P, Demizieux L, Gresti J, Chardigny JM, Sebedio JL, Clouet P (2004) Hepatic steatosis is not due to impaired fatty acid oxidation capacities in C57BL/6J mice fed the conjugated trans-10, cis-12-isomer of linoleic acid. J Nutr 134(4):861–867PubMedGoogle Scholar
  72. 72.
    Nagao K, Inoue N, Wang YM, Shirouchi B, Yanagita T (2005) Dietary conjugated linoleic acid alleviates nonalcoholic fatty liver disease in Zucker (fa/fa) rats. J Nutr 135(1):9–13PubMedGoogle Scholar
  73. 73.
    Peters JM, Park Y, Gonzalez FJ, Pariza MW (2001) Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor α-null mice 1533(3):233–242Google Scholar
  74. 74.
    Ribot J, Portillo MP, Picó C, Teresa Macarulla M, Palou A (2007) Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet. Br J Nutr 97(06):1074–1082PubMedCrossRefGoogle Scholar
  75. 75.
    Salmons S, Henriksson J (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4(2):94–105PubMedCrossRefGoogle Scholar
  76. 76.
    Hänninen O, Atalay M (1998) Oxidative metabolism in skeletal muscle. In: Anonymous oxidative stress in skeletal muscle, SpringerGoogle Scholar
  77. 77.
    Westerblad H, Bruton JD, Katz A (2010) Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res 316(18):3093–3099PubMedCrossRefGoogle Scholar
  78. 78.
    Felig P, Wahren J (1975) Fuel homeostasis in exercise. N Engl J Med 293(21):1078–1084PubMedCrossRefGoogle Scholar
  79. 79.
    Wahren J (1977) Glucose turnover during exercise in man*. Ann NY Acad Sci 301(1):45–55PubMedCrossRefGoogle Scholar
  80. 80.
    Esséen B (1977) Intramuscular substrate utilization during prolonged exercise*. Ann NY Acad Sci 301(1):30–44CrossRefGoogle Scholar
  81. 81.
    Sahlin K, Tonkonogi M, Söderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162(3):261–266PubMedCrossRefGoogle Scholar
  82. 82.
    Cantó C, Auwerx J (2010) AMP-activated protein kinase and its downstream transcriptional pathways 67(20):3407–3423Google Scholar
  83. 83.
    Spangenburg E, Booth F (2003) Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand 178(4):413–424PubMedCrossRefGoogle Scholar
  84. 84.
    Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531PubMedCrossRefGoogle Scholar
  85. 85.
    Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23(4):369–379PubMedCrossRefGoogle Scholar
  86. 86.
    Hood DA, Irrcher I, Ljubicic V, Joseph A (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209(12):2265–2275PubMedCrossRefGoogle Scholar
  87. 87.
    Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21:48–60CrossRefGoogle Scholar
  88. 88.
    Kwon H, Ott M (2008) The ups and downs of SIRT1. Trends Biochem Sci 33(11):517–525PubMedCrossRefGoogle Scholar
  89. 89.
    Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751–E760PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370PubMedCrossRefGoogle Scholar
  91. 91.
    Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1α-mediated adaptations in skeletal muscle. Pflüg Arch-Eur J Physiol 460(1):153–162CrossRefGoogle Scholar
  92. 92.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu ZD, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801PubMedCrossRefGoogle Scholar
  93. 93.
    Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA (2003) Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 17(15):2299–2301PubMedGoogle Scholar
  94. 94.
    Wang Y, Zhang C, Yu R, Cho H, Nelson M, Bayuga-Ocampo C, Ham J, Kang H, Evans R (2004) Regulation of muscle fiber type and running endurance by PPAR delta. PLoS Biol 2(10):1532–1539CrossRefGoogle Scholar
  95. 95.
    Terpstra AH, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL (2002) The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 132(5):940–945PubMedGoogle Scholar
  96. 96.
    Kim JH, Gilliard D, Good DJ, Park Y (2012) Preventive effects of conjugated linoleic acid on obesity by improved physical activity in nescient basic helix-loop-helix 2 knockout mice during growth period. Food Funct 3(12):1280–1285PubMedCrossRefGoogle Scholar
  97. 97.
    Halade GV, Rahman MM, Fernandes G (2009) Effect of CLA isomers and their mixture on aging C57Bl/6J mice. Eur J Nutr 48(7):409–418PubMedCrossRefGoogle Scholar
  98. 98.
    Kim JH, Park Y, Kim D, Good DJ, Park Y (2013) Dietary conjugated nonadecadienoic acid prevents adult-onset obesity in nescient basic helix-loop-helix 2 knockout mice. J Nutr Biochem 24(3):556–566PubMedCrossRefGoogle Scholar
  99. 99.
    Kim Y, Kim D, Good DJ, Park Y (2015) Effects of post-weaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice. J Agric Food Chem 63:5212–5223PubMedCrossRefGoogle Scholar
  100. 100.
    Parra P, Serra F, Palou A (2012) Transcriptional analysis reveals a high impact of conjugated linoleic acid on stearoyl-Coenzyme A desaturase 1 mRNA expression in mice gastrocnemius muscle. Genes Nutr 7(4):537–548PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA (2012) Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids Health Dis 11:142PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Oraldi M, Maggiora M, Paiuzzi E, Canuto RA, Muzio G (2013) CLA Reduces inflammatory mediators from A427 human lung cancer cells and A427 conditioned medium promotes differentiation of C2C12 murine muscle cells. Lipids 48(1):29–38PubMedCrossRefGoogle Scholar
  103. 103.
    Huang J, Qi R, Chen X, You X, Liu X, Yang F, Liu Z (2014) Improvement in the carcass traits and meat quality of growing-finishing Rongchang pigs by conjugated linoleic acid through altered gene expression of muscle fiber types. Genet Mol Res: GMR 13(3):7061–7069PubMedCrossRefGoogle Scholar
  104. 104.
    Men X, Deng B, Xu Z, Tao X, Qi K (2013) Age-related changes and nutritional regulation of myosin heavy-chain composition in longissimus dorsi of commercial pigs. Animal 7(09):1486–1492PubMedCrossRefGoogle Scholar
  105. 105.
    Kim JH, Park HG, Pan JH, Kim SH, Yoon HG, Bae GS, Lee H, Eom S, Kim YJ (2010) Dietary conjugated linoleic acid increases endurance capacity of mice during treadmill exercise 13(5):1057–1060Google Scholar
  106. 106.
    Barone R, Macaluso F, Catanese P, Gammazza AM, Rizzuto L, Marozzi P, Giudice GL, Stampone T, Cappello F, Morici G (2013) Endurance exercise and Conjugated Linoleic Acid (CLA) supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis 8(11):e79686Google Scholar
  107. 107.
    Mohankumar SK, Taylor CG, Siemens L, Zahradka P (2013) Activation of phosphatidylinositol-3 kinase, AMP-activated kinase and Akt substrate-160 kDa by trans-10, cis-12 conjugated linoleic acid mediates skeletal muscle glucose uptake. J Nutr Biochem 24(2):445–456PubMedCrossRefGoogle Scholar
  108. 108.
    Mohankumar SK, Taylor CG, Siemens L, Zahradka P (2012) Acute exposure of L6 myotubes to cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers stimulates glucose uptake by modulating Ca2+/calmodulin-dependent protein kinase II. Int J Biochem Cell Biol 44(8):1321–1330PubMedCrossRefGoogle Scholar
  109. 109.
    Kim Y, Park Y (2015) Conjugated linoleic acid (CLA) stimulates mitochondrial biogenesis signaling by the upregulation of PPARγ coactivator 1α (PGC-1α) in C2C12 cells. Lipids 50(4):329–338PubMedCrossRefGoogle Scholar
  110. 110.
    Qin H, Liu Y, Lu N, Li Y, Sun C (2009) cis-9, trans-11-conjugated linoleic acid activates AMP-activated protein kinase in attenuation of insulin resistance in C2C12 myotubes. J Agric Food Chem 57(10):4452–4458PubMedCrossRefGoogle Scholar
  111. 111.
    Hur SJ, Kim DH, Chun SC, Lee SK (2013) Effects of dietary conjugated linoleic acid and biopolymer encapsulation on lipid metabolism in mice. Int J Mol Sci 14(4):6848–6862PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Salgado JM, Ferreira TRB, Donado-Pestana CM, de Almeida OC, Das Neves, Aline Mouro Ribeiro, Mansi DN, Dias, dos Santos CT (2012) Conjugated linoleic acid combined with physical activity reduces body fat accumulation but does not modify lean body mass in male and female Wistar rats. J Med Food 15(4):406–412PubMedCrossRefGoogle Scholar
  113. 113.
    Park Y (1996) Regulation of energy metabolism and the catabolic effects of immune stimulation by conjugated linocleic acidGoogle Scholar
  114. 114.
    Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130(12):2943–2948PubMedGoogle Scholar
  115. 115.
    Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL (2002) Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res 16(3):325–334PubMedGoogle Scholar
  116. 116.
    Colakoglu S, Colakoglu M, Taneli F, Cetinoz F, Turkmen M (2006) Cumulative effects of conjugated linoleic acid and exercise on endurance development, body composition, serum leptin and insulin levels. J Sports Med Phys Fit 46(4):570–577Google Scholar
  117. 117.
    Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty T (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 2(10):e991PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Diaz ML, Watkins BA, Li Y, Anderson RA, Campbell WW (2008) Chromium picolinate and conjugated linoleic acid do not synergistically influence diet-and exercise-induced changes in body composition and health indexes in overweight women. J Nutr Biochem 19(1):61–68PubMedCrossRefGoogle Scholar
  119. 119.
    Chen S, Lin Y, Huang H, Hsu W, Houng J, Huang C (2012) Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition 28(5):559–565PubMedCrossRefGoogle Scholar
  120. 120.
    Macaluso F, Barone R, Catanese P, Carini F, Rizzuto L, Farina F, Di Felice V (2013) Do fat supplements increase physical performance? Nutrients 5(2):509–524PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Jenkins NDM, Buckner SL, Baker RB, Bergstrom HC, Cochrane KC, Weir JP, Housh TJ, Cramer JT (2014) Effects of 6 weeks of aerobic exercise combined with conjugated linoleic acid on the physical working capacity at fatigue threshold. J Strength Cond Res 28(8):2127–2135PubMedCrossRefGoogle Scholar
  122. 122.
    Jenkins NDM, Buckner SL, Cochrane KC, Bergstrom HC, Goldsmith JA, Weir JP, Housh TJ, Cramer JT (2014) CLA supplementation and aerobic exercise lower blood triacylglycerol, but have no effect on peak oxygen uptake or cardiorespiratory fatigue thresholds. Lipids 49(9):871–880PubMedCrossRefGoogle Scholar
  123. 123.
    Ha YL, Jeong SB (2010) Effects of conjugated linoleic acid on body fat reduction and physical exercise enhancement of obese male middle school students. J Life Sci 20:1844–1850CrossRefGoogle Scholar
  124. 124.
    Tajmanesh M, Aryaeian N, Hosseini M, Mazaheri R, Kordi R (2015) Conjugated linoleic acid supplementation has no impact on aerobic capacity of healthy young men. Lipids:1–5Google Scholar
  125. 125.
    Michishita T, Kobayashi S, Katsuya T, Ogihara T, Kawabuchi K (2010) Evaluation of the antiobesity effects of an amino acid mixture and conjugated linoleic acid on exercising healthy overweight humans: a randomized, double-blind, placebo-controlled trial. J Int Med Res 38(3):844–859PubMedCrossRefGoogle Scholar
  126. 126.
    Macaluso F, Morici G, Catanese P, Ardizzone NM, Marino Gammazza A, Bonsignore G, Lo Giudice G, Stampone T, Barone R, Farina F, Di Felice V (2012) Effect of conjugated linoleic acid on testosterone levels in vitro and in vivo after an acute bout of resistance exercise. J Strength Cond Res 26(6):1667–1674PubMedCrossRefGoogle Scholar
  127. 127.
    Usui T, Kajita K, Kajita T, Mori I, Hanamoto T, Ikeda T, Okada H, Taguchi K, Kitada Y, Morita H (2014) Elevated mitochondrial biogenesis in skeletal muscle is associated with testosterone-induced body weight loss in male mice. FEBS Lett 588(10):1935–1941PubMedCrossRefGoogle Scholar
  128. 128.
    Whigham L, O’shea M, Mohede I, Walaski H, Atkinson R (2004) Safety profile of conjugated linoleic acid in a 12-month trial in obese humans. Food Chem Toxicol 42(10):1701–1709PubMedCrossRefGoogle Scholar
  129. 129.
    Pfeuffer M, Fielitz K, Laue C, Winkler P, Rubin D, Helwig U, Giller K, Kammann J, Schwedhelm E, Boeger RH, Bub A, Bell D, Schrezenmeir J (2011) CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. J Am Coll Nutr 30(1):19–28PubMedCrossRefGoogle Scholar
  130. 130.
    Kim J, Paik H, Shin M, Park E (2012) Eight weeks of conjugated linoleic acid supplementation has no effect on antioxidant status in healthy overweight/obese Korean individuals. Eur J Nutr 51(2):135–141PubMedCrossRefGoogle Scholar
  131. 131.
    Banni S, Petroni A, Blasevich M, Carta G, Cordeddu L, Murru E, Melis M, Mahon A, Belury M (2004) Conjugated linoleic acids (CLA) as precursors of a distinct family of PUFA. Lipids 39(11):1143–1146PubMedCrossRefGoogle Scholar
  132. 132.
    Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL, Griinari JM (2002) Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 76(3):504–510PubMedGoogle Scholar
  133. 133.
    Bernard L, Leroux C, Chilliard Y (2008) Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Bioact Compon Milk 606:67–108CrossRefGoogle Scholar
  134. 134.
    Bauman D, Griinari J (2003) Nutritional regulation of milk fat synthesis. Annu Rev Nutr 23:203–227PubMedCrossRefGoogle Scholar
  135. 135.
    Hasin A, Griinari JM, Williams JE, Shahin AM, McGuire MA, McGuire MK (2007) Consumption of c9, t11–18: 2 or t10, c12–18: 2 enriched dietary supplements does not influence milk macronutrients in healthy, lactating women. Lipids 42(9):835–843PubMedCrossRefGoogle Scholar
  136. 136.
    Mosley SA, Shahin AM, Williams J, McGuire MA, McGuire MK (2007) Supplemental conjugated linoleic acid consumption does not influence milk macronutrient contents in all healthy lactating women. Lipids 42(8):723–729PubMedCrossRefGoogle Scholar
  137. 137.
    Masters N, McGuire MA, Beerman KA, Dasgupta N, McGuire MK (2002) Maternal supplementation with CLA decreases milk fat in humans. Lipids 37(2):133–138PubMedCrossRefGoogle Scholar
  138. 138.
    Belury MA, Kempa-Steczko A (1997) Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids 32(2):199–204PubMedCrossRefGoogle Scholar
  139. 139.
    Jaudszus A, Moeckel P, Hamelmann E, Jahreis G (2010) Trans-10, cis-12-CLA-caused lipodystrophy is associated with profound changes of fatty acid profiles of liver, white adipose tissue and erythrocytes in mice: possible link to tissue-specific alterations of fatty acid desaturation. Ann Nutr Metab 57(2):103–111PubMedCrossRefGoogle Scholar
  140. 140.
    Larsen TM, Toubro S, Astrup A (2003) Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res 44(12):2234–2241PubMedCrossRefGoogle Scholar
  141. 141.
    Onakpoya IJ, Posadzki PP, Watson LK, Davies LA, Ernst E (2012) The efficacy of long-term conjugated linoleic acid (CLA) supplementation on body composition in overweight and obese individuals: a systematic review and meta-analysis of randomized clinical trials. Eur J Nutr 51(2):127–134PubMedCrossRefGoogle Scholar
  142. 142.
    Wanders AJ, Leder L, Banga JD, Katan MB, Brouwer IA (2010) A high intake of conjugated linoleic acid does not affect liver and kidney function tests in healthy human subjects. Food Chem Toxicol 48(2):587–590PubMedCrossRefGoogle Scholar
  143. 143.
    Ramos R, Mascarenhas J, Duarte P, Vicente C, Casteleiro C (2009) Conjugated linoleic acid-induced toxic hepatitis: first case report. Dig Dis Sci 54(5):1141–1143PubMedCrossRefGoogle Scholar
  144. 144.
    Nortadas R, Barata J (2012) Fulminant hepatitis during self-medication with conjugated linoleic acid. Ann Hepatol 11(2):265–267PubMedGoogle Scholar
  145. 145.
    Bilal M, Patel Y, Burkitt M, Babich M (2015) Linoleic acid induced acute hepatitis: a case report and review of the literature. Case Reports Hepatol 2015:807354PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    DeLany JP, Blohm F, Truett AA, Scimeca JA, West DB (1999) Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol 276(4 Pt 2):R1172–R1179PubMedGoogle Scholar
  147. 147.
    Park Y, Pariza MW (2001) Lipoxygenase inhibitors inhibit heparin-releasable lipoprotein lipase activity in 3T3-L1 adipocytes and enhance body fat reduction in mice by conjugated linoleic acid. Biochim et Biophys Acta (BBA)-Mol Cell Biol Lipids 1534(1):27–33CrossRefGoogle Scholar
  148. 148.
    Park Y, Pariza MW (2001) The effects of dietary conjugated nonadecadienoic acid on body composition in mice. Biochim et Biophys Acta (BBA)-Mol Cell Biol Lipids 1533(3):171–174CrossRefGoogle Scholar
  149. 149.
    Ntambi JM, Choi Y, Park Y, Peters JM, Pariza MW (2002) Effects of conjugated linoleic acid (CLA) on immune responses, body composition and stearoyl-CoA desaturase. Can J Appl Physiol 27(6):617–627PubMedCrossRefGoogle Scholar
  150. 150.
    Hayman A, MacGibbon A, Pack RJ, Rutherfurd K, Green JH (2002) High intake, but not low intake, of CLA impairs weight gain in growing mice. Lipids 37(7):689–692PubMedCrossRefGoogle Scholar
  151. 151.
    Warren JM, Simon VA, Bartolini G, Erickson KL, Mackey BE, Kelley DS (2003) Trans-10, cis-12 CLA increases liver and decreases adipose tissue lipids in mice: possible roles of specific lipid metabolism genes. Lipids 38(5):497–504PubMedCrossRefGoogle Scholar
  152. 152.
    Chardigny JM, Hasselwander O, Genty M, Kraemer K, Ptock A, Sededio JL (2003) Effect of conjugated FA on feed intake, body composition, and liver FA in mice. Lipids 38(9):895–902PubMedCrossRefGoogle Scholar
  153. 153.
    Terpstra AHM, Javadi M, Beynen AC, Kocsis S, Lankhorst AE, Lemmens AG, Mohede ICM (2003) Dietary conjugated linoleic acids as free fatty acids and triacylglycerols similarly affect body composition and energy balance in mice. J Nutr 133(10):3181–3186PubMedGoogle Scholar
  154. 154.
    Hargrave KM, Meyer BJ, Li C, Azain MJ, Baile CA, Miner JL (2004) Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice*. Obes Res 12(9):1435–1444PubMedCrossRefGoogle Scholar
  155. 155.
    Park Y, Storkson JM, Liu W, Albright KJ, Cook ME, Pariza MW (2004) Structure–activity relationship of conjugated linoleic acid and its cognates in inhibiting heparin-releasable lipoprotein lipase and glycerol release from fully differentiated 3T3-L1 adipocytes. J Nutr Biochem 15(9):561–568PubMedCrossRefGoogle Scholar
  156. 156.
    Javadi M, Beynen AC, Hovenier R, Lankhorst AE, Lemmens AG, Terpstra AHM, Geelen MJH (2004) Prolonged feeding of mice with conjugated linoleic acid increases hepatic fatty acid synthesis relative to oxidation. J Nutr Biochem 15(11):680–687PubMedCrossRefGoogle Scholar
  157. 157.
    Ohashi A, Matsushita Y, Shibata H, Kimura K, Miyashita K, Saito M (2004) Conjugated linoleic acid deteriorates insulin resistance in obese/diabetic mice in association with decreased production of adiponectin and leptin. J Nutr Sci Vitaminol 50(6):416–421PubMedCrossRefGoogle Scholar
  158. 158.
    Javadi M, Everts H, Hovenier R, Kocsis S, Lankhorst AE, Lemmens AG, Schonewille JT, Terpstra AHM, Beynen AC (2004) The effect of six different C18 fatty acids on body fat and energy metabolism in mice. Br J Nutr 92(3):391–399PubMedCrossRefGoogle Scholar
  159. 159.
    Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW (2005) Biological activities of conjugated fatty acids: conjugated eicosadienoic (conj. 20: 2 Delta (c11, t13/t12, c14)) eicosatrienoic (conj. 20: 3 Delta (c8, t12, c14)) and heneicosadienoic (conj. 21: 2 Delta (c12, t144/c13, t15)) acids and other metabolites of conjugated linoleic acid. Biochim et Biophys Acta (BBA)-Mol Cell Biol Lipids 1687(1–3):120–129CrossRefGoogle Scholar
  160. 160.
    de Roos B, Rucklidge G, Reid M, Ross K, Duncan G, Navarro MA, Arbones-Mainar JM, Guzman-Garcia MA, Osada J, Browne J, Loscher CE, Roche HM (2005) Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach. FASEB J 19(9):1746PubMedGoogle Scholar
  161. 161.
    Hargrave KM, Azain MJ, Miner JL (2005) Dietary coconut oil increases conjugated linoleic acid-induced body fat loss in mice independent of essential fatty acid deficiency. Biochim et Biophys Acta (BBA)-Mol Cell Biol Lipids 1737(1):52–60CrossRefGoogle Scholar
  162. 162.
    Winzell MS, Pacini G, Ahren B (2006) Insulin secretion after dietary supplementation with conjugated linoleic acids and n-3 polyunsaturated fatty acids in normal and insulin-resistant mice. Am J Physiol-Endocrinol Metab 290(2):E347–E354PubMedCrossRefGoogle Scholar
  163. 163.
    Bhattacharya A, Rahman MM, McCarter R, O’Shea M, Fernandes G (2006) Conjugated linoleic acid and chromium lower body weight and visceral fat mass in high-fat-diet-fed mice. Lipids 41(5):437–444PubMedCrossRefGoogle Scholar
  164. 164.
    Viswanadha S, McGilliard ML, Herbein JH (2006) Desaturation indices in liver, muscle, and bone of growing male and female mice fed trans-10, cis-12 conjugated linoleic acid. Lipids 41(8):763–770PubMedCrossRefGoogle Scholar
  165. 165.
    Rahman MM, Bhattacharya A, Banu J, Fernandes G (2007) Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 18(7):467–474PubMedCrossRefGoogle Scholar
  166. 166.
    Javadi M, Geelen MJH, Everts H, Lemmens AG, Beynen AC (2007) Body composition and selected blood parameters in mice fed a combination of fibre and conjugated linoleic acid. J Anim Physiol Anim Nutr 91(11–12):492–497CrossRefGoogle Scholar
  167. 167.
    Hur S, Whitcomb F, Rhee S, Park Y, Good DJ, Park Y (2009) Effects of trans-10, cis-12 conjugated linoleic acid on body composition in genetically obese mice. J Med Food 12(1):56–63PubMedCrossRefGoogle Scholar
  168. 168.
    Andreoli MF, Gonzalez MA, Martinelli MI, Mocchiutti NO, Bernal CA (2009) Effects of dietary conjugated linoleic acid at high-fat levels on triacylglycerol regulation in mice. Nutrition 25(4):445–452PubMedCrossRefGoogle Scholar
  169. 169.
    Moon H, Lee H, Seo J, Chung C, Kim T, Choi Y, Cho C (2009) Antiobesity effect of PEGylated conjugated linoleic acid on high-fat diet-induced obese C57BL/6J (ob/ob) mice: attenuation of insulin resistance and enhancement of antioxidant defenses. J Nutr Biochem 20(3):187–194PubMedCrossRefGoogle Scholar
  170. 170.
    Parra P, Serra F, Palou A (2010) Moderate doses of conjugated linoleic acid isomers mix contribute to lowering body fat content maintaining insulin sensitivity and a noninflammatory pattern in adipose tissue in mice. J Nutr Biochem 21(2):107–115PubMedCrossRefGoogle Scholar
  171. 171.
    Halade GV, Rahman MM, Williams PJ, Fernandes G (2011) Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57Bl/6 J mice. J Nutr Biochem 22(5):459–469PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Park Y, Terk M, Park Y (2011) Interaction between dietary conjugated linoleic acid and calcium supplementation affecting bone and fat mass. J Bone Miner Metab 29(3):268–278PubMedCrossRefGoogle Scholar
  173. 173.
    Fedor DM, Adkins Y, Newman JW, Mackey BE, Kelley DS (2013) The Effect of docosahexaenoic acid on t 10, c 12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, Adipose, and Muscle. Metab Syndr Relat Disord 11(1):63–70PubMedCrossRefGoogle Scholar
  174. 174.
    Scalerandi MV, Gonzalez MA, Saín J, Fariña AC, Bernal CA (2014) Effect of conjugated linoleic acid mixtures and different edible oils on body composition and lipid regulation in mice. Nutr Hosp 3(29):591–601Google Scholar
  175. 175.
    Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130(6):1548–1554PubMedGoogle Scholar
  176. 176.
    Sisk MB, Hausman DB, Martin RJ, Azain MJ (2001) Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. J Nutr 131(6):1668–1674PubMedGoogle Scholar
  177. 177.
    Kim MR, Park Y, Albright KJ, Pariza MW (2002) Differential responses of hamsters and rats fed high-fat or low-fat diets supplemented with conjugated linoleic acid. Nutr Res 22(6):715–722CrossRefGoogle Scholar
  178. 178.
    Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, Shima A, Terada H (1997) Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett 409(3):401–406PubMedCrossRefGoogle Scholar
  179. 179.
    Henriksen EJ, Teachey MK, Taylor ZC, Jacob S, Ptock A, Kramer K, Hasselwander O (2003) Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. Am J Physiol-Endocrinol Metabol 285(1):E98–E105CrossRefGoogle Scholar
  180. 180.
    Sanders SR, Teachey MK, Ptock A, Kraemer K, Hasselwander O, Henriksen EJ, Baumgard LH (2004) Effects of specific conjugated linoleic acid isomers on growth characteristics in obese Zucker rats. Lipids 39(6):537–543PubMedCrossRefGoogle Scholar
  181. 181.
    Botelho AP, Santos-Zago LF, de Oliveira AC (2008) Conjugated linoleic acid supplementation modified the body composition and serum leptin levels in weaning rats. Arch Latinoam Nutr 58(2):156–163Google Scholar
  182. 182.
    Ogborn MR, Nitschmann E, Goldberg A, Bankovic-Calic N, Weiler HA, Aukema HM (2008) Dietary conjugated linoleic acid renal benefits and possible toxicity vary with isomer, dose and gender in rat polycystic kidney disease. Lipids 43(9):783–791PubMedCrossRefGoogle Scholar
  183. 183.
    Roy BD, Bourgeois J, Rodriguez C, Payne E, Young K, Shaughnessy SG, Tarnopolosky MA (2008) Conjugated linoleic acid prevents growth attenuation induced by corticosteroid administration and increases bone mineral content in young rats. Appl Physiol, Nutr, Metab 33(6):1096–1104CrossRefGoogle Scholar
  184. 184.
    DeGuire JR, Weiler HA (2013) Free fatty acid and triacylglycerol forms of CLA isomers are not incorporated equally in the liver but do not lead to differences in bone density and biomarkers of bone metabolism. Prostaglandins Leukot Essent Fat Acids 88(5):399–403CrossRefGoogle Scholar
  185. 185.
    de Almeida MM, de Souza YO, Potente Dutra Luquetti SC, Sabarense CM, do Amaral Correa JO, Santos da Conceicao EP, Lisboa PC, de Moura EG, Andrade Soares SM, Moura Gualberto AC, Gameiro J, Sundfeld da Gama MA, Ferraz Lopes FC, Gonzalez Garcia RM (2015) Cis-9, trans-11 and trans-10, cis-12 CLA mixture does not change body composition, induces insulin resistance and increases serum HDL cholesterol level in rats. J Oleo Sci 64(5):539–551PubMedCrossRefGoogle Scholar
  186. 186.
    Berven G, Bye A, Hals O, Blankson H, Fagertun H, Thom E, Wadstein J, Gudmundsen O (2000) Safety of conjugated linoleic acid (CLA) in overweight or obese human volunteers. Eur J Lipid Sci Technol 102(7):455–462CrossRefGoogle Scholar
  187. 187.
    Riserus U, Arner P, Brismar K, Vessby B (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 25(9):1516–1521PubMedCrossRefGoogle Scholar
  188. 188.
    Riserus U, Vessby B, Arnlov J, Basu S (2004) Effects of cis-9, trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr 80(2):279–283PubMedGoogle Scholar
  189. 189.
    Larsen TM, Toubro S, Gudmundsen O, Astrup A (2006) Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr 83(3):606–612PubMedGoogle Scholar
  190. 190.
    Laso N, Brugué E, Vidal J, Ros E, Arnaiz JA, Carné X, Vidal S, Mas S, Deulofeu R, Lafuente A (2007) Effects of milk supplementation with conjugated linoleic acid (isomers cis-9, trans-11 and trans-10, cis-12) on body composition and metabolic syndrome components. Br J Nutr 98(04):860–867PubMedCrossRefGoogle Scholar
  191. 191.
    Park E, Kim J, Kim K, Paik H (2008) Conjugated linoleic acid (CLA) supplementation for 8 weeks reduces body weight in healthy overweight/obese Korean subjects. Food Sci Biotechnol 17(6):1261–1264Google Scholar
  192. 192.
    Norris LE, Collene AL, Asp ML, Hsu JC, Liu LF, Richardson JR, Li D, Bell D, Osei K, Jackson RD, Belury MA (2009) Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am J Clin Nutr 90(3):468–476PubMedCentralPubMedCrossRefGoogle Scholar
  193. 193.
    Joseph SV, Jacques H, Plourde M, Mitchell PL, McLeod RS, Jones PJ (2011) Conjugated linoleic acid supplementation for 8 weeks does not affect body composition, lipid profile, or safety biomarkers in overweight, hyperlipidemic men. J Nutr 141(7):1286–1291PubMedCrossRefGoogle Scholar
  194. 194.
    López-Plaza B, Bermejo LM, Weber TK, Parra P, Serra F, Hernández M, Milla SP, Gómez-Candela C (2013) Effects of milk supplementation with conjugated linoleic acid on weight control and body composition in healthy overweight people. Nutr Hosp 28(6):2090–2098PubMedGoogle Scholar
  195. 195.
    Shadman Z, Taleban FA, Saadat N, Hedayati M (2013) Effect of conjugated linoleic acid and vitamin E on glycemic control, body composition, and inflammatory markers in overweight type2 diabetics. J diabetes metab disord 12(1):1–9CrossRefGoogle Scholar
  196. 196.
    Ormsbee MJ, Rawal SR, Baur DA, Kinsey AW, Elam ML, Spicer MT, Fischer NT, Madzima TA, Thomas DD (2014) The effects of a multi-ingredient dietary supplement on body composition, adipokines, blood lipids, and metabolic health in overweight and obese men and women: a randomized controlled trial. J Int Soc Sports Nutr 11:37PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Di Felice V, Macaluso F, Montalbano A, Gammazza AM, Palumbo D, Angelone T, Bellafiore M, Farina F (2007) Effects of conjugated linoleic acid and endurance training on peripheral blood and bone marrow of trained mice. J Strength Cond Res 21(1):193–198PubMedCrossRefGoogle Scholar
  198. 198.
    Banu J, Bhattacharya A, Rahman M, Fernandes G (2008) Beneficial effects of conjugated linoleic acid and exercise on bone of middle-aged female mice. J Bone Miner Metab 26(5):436–445PubMedCrossRefGoogle Scholar
  199. 199.
    Zhang G, Shirai N, Higuchi T, Suzuki H, Shimizu E (2009) A comparative study of the effects of Erabu sea snake (Laticauda semifasciata) lipids, green tea extract and conjugated linoleic acid on the swimming endurance of mice. Int J Vitam Nutr Res 79(56):362–374PubMedCrossRefGoogle Scholar
  200. 200.
    Shen W, Baldwin J, Collins B, Hixson L, Lee K, Herberg T, Starnes J, Cooney P, Chuang C, Hopkins R, Reid T, Gupta S, McIntosh M (2015) Low level of trans-10, cis-12 conjugated linoleic acid decreases adiposity and increases browning independent of inflammatory signaling in overweight Sv129 mice. J Nutr Biochem 26(6):616–625PubMedCrossRefGoogle Scholar
  201. 201.
    Mirand PP, Arnal-Bagnard MA, Mosoni L, Faulconnier Y, Chardigny JM, Chilliard Y (2004) Cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers do not modify body composition in adult sedentary or exercised rats. J Nutr 134(9):2263–2269PubMedGoogle Scholar
  202. 202.
    Faulconnier Y, Arnal MA, Mirand PP, Chardigny JM, Chilliard Y (2004) Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained Wistar rat. J Nutr Biochem 15(12):741–748PubMedCrossRefGoogle Scholar
  203. 203.
    Thom E, Wadstein J, Gudmundsen O (2001) Conjugated linoleic acid reduces body fat in healthy exercising humans. J Int Med Res 29(5):392–396PubMedCrossRefGoogle Scholar
  204. 204.
    Adams RE, Hsueh A, Alford B, King C, Mo H, Wildman R (2006) Conjugated linoleic acid supplementation does not reduce visceral adipose tissue in middle-aged men engaged in a resistance-training program. J Int Soc Sports Nutr 3(2):28–36PubMedCentralPubMedCrossRefGoogle Scholar
  205. 205.
    Bulut S, Bodur E, Colak R, Turnagol H (2013) Effects of conjugated linoleic acid supplementation and exercise on post-heparin lipoprotein lipase, butyrylcholinesterase, blood lipid profile and glucose metabolism in young men. Chem Biol Interact 203(1):323–329PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2016

Authors and Affiliations

  • Yoo Kim
    • 1
  • Jonggun Kim
    • 2
  • Kwang-Youn Whang
    • 2
  • Yeonhwa Park
    • 1
    Email author
  1. 1.Department of Food ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Division of BiotechnologyKorea UniversitySeoulRepublic of Korea

Personalised recommendations