Skip to main content
Log in

Plant Cytosolic Acyl-CoA-Binding Proteins

  • Review
  • Published:
Lipids

Abstract

A gene family encoding six members of acyl-CoA-binding proteins (ACBP) exists in Arabidopsis and they are designated as AtACBP1–AtACBP6. They have been observed to play pivotal roles in plant lipid metabolism, consistent to the abilities of recombinant AtACBP in binding different medium- and long-chain acyl-CoA esters in vitro. While AtACBP1 and AtACBP2 are membrane-associated proteins with ankyrin repeats and AtACBP3 contains a signaling peptide for targeting to the apoplast, AtACBP4, AtACBP5 and AtACBP6 represent the cytosolic forms in the AtACBP family. They were verified to be subcellularly localized in the cytosol using diverse experimental methods, including cell fractionation followed by western blot analysis, immunoelectron microscopy and confocal laser-scanning microscopy using autofluorescence-tagged fusions. AtACBP4 (73.2 kDa) and AtACBP5 (70.1 kDa) are the largest, while AtACBP6 (10.4 kDa) is the smallest. Their binding affinities to oleoyl-CoA esters suggested that they can potentially transfer oleoyl-CoA esters from the plastids to the endoplasmic reticulum, facilitating the subsequent biosynthesis of non-plastidial membrane lipids in Arabidopsis. Recent studies on ACBP, extended from a dicot (Arabidopsis) to a monocot, revealed that six ACBP are also encoded in rice (Oryza sativa). Interestingly, three small rice ACBP (OsACBP1, OsACBP2 and OsACBP3) are present in the cytosol in comparison to one (AtACBP6) in Arabidopsis. In this review, the combinatory and distinct roles of the cytosolic AtACBP are discussed, including their functions in pollen and seed development, light-dependent regulation and substrate affinities to acyl-CoA esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABCG26:

ATP-BINDING CASSETTE TRANSPORTER G26

ACBP:

Acyl-CoA-binding proteins

ACP:

Acyl carrier protein

ACS5:

ACYL-COA SYNTHETASE5

AtEBP:

Arabidopsis ethylene-responsive element binding protein

DAG:

Diacylglycerol

DGAT:

Diacylglycerol acyltransferase

DGDG:

Digalactosyldiacylglycerol

ER:

Endoplasmic reticulum

FA:

Fatty acid(s)

FAD7:

FATTY ACID DESATURASE7

GPAT:

Glycerol-3-phosphate acyltransferase

ITC:

Isothermal titration calorimetry

LPCAT:

Lyso-phosphatidylcholine acyltransferase

LTP:

Lipid transfer proteins

MGDG:

Monogalactosyldiacylglycerol

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PM:

Plasma membrane

TAG:

Triacylglycerol(s)

References

  1. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  PubMed  CAS  Google Scholar 

  3. Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56

    Article  PubMed  Google Scholar 

  4. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  5. Kader JC (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trend Plant Sci 2:66–70

    Article  Google Scholar 

  6. Xiao S, Chye ML (2009) An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem 47:479–484

    Article  PubMed  CAS  Google Scholar 

  7. Xiao S, Chye ML (2011) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151

    Article  PubMed  CAS  Google Scholar 

  8. Lung SC, Chye ML (2015) Deciphering the roles of acyl-CoA-binding proteins in plant cells. Protoplasma. doi:10.1007/s00709-015-0882-6

    PubMed  Google Scholar 

  9. Hurlock AK, Roston RL, Wang K, Benning C (2014) Lipid trafficking in plant cells. Traffic 15:915–932

    Article  PubMed  CAS  Google Scholar 

  10. Yeats TH, Rose JK (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17:191–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mandrup S, Jepsen R, Skott H, Rosendal J, Hojrup P, Kristiansen K, Knudsen J (1993) Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochem J 290:369–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rasmussen JT, Rosendal J, Knudsen J (1993) Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor. Biochem J 292:907–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Knudsen J, Faergeman NJ, Skott H, Hummel R, Borsting C, Rose TM, Andersen JS, Hojrup P, Roepstorff P, Kristiansen K (1994) Yeast acyl-CoA-binding protein: acyl-CoA-binding affinity and effect on intracellular acyl-CoA pool size. Biochem J 302:479–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323:1–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Huang H, Atshaves BP, Frolov A, Kier AB, Schroeder F (2005) Acyl-coenzyme A binding protein expression alters liver fatty acyl-coenzyme A metabolism. Biochemistry 44:10282–10297

    Article  PubMed  CAS  Google Scholar 

  16. Guerrero C, Martin-Rufian M, Reina JJ, Heredia A (2006) Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L. epidermis. Plant Physiol Biochem 44:85–90

    Article  PubMed  CAS  Google Scholar 

  17. Erber A, Horstmann C, Schobert C (1997) A cDNA clone for acyl-CoA-binding protein from castor bean. Plant Physiol 114:396

    Google Scholar 

  18. Metzner M, Ruecknagel KP, Knudsen J, Kuellertz G, Mueller-Uri F, Diettrich B (2000) Isolation and characterization of two acyl-CoA-binding proteins from proembryogenic masses of Digitalis lanata Ehrh. Planta 210:683–685

    Article  PubMed  CAS  Google Scholar 

  19. Hills MJ, Dann R, Lydiate D, Sharpe A (1994) Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-CoA-binding protein. Plant Mol Biol 25:917–920

    Article  PubMed  CAS  Google Scholar 

  20. Brown AP, Johnson P, Rawsthorne S, Hills MJ (1998) Expression and properties of acyl-CoA binding protein from Brassica napus. Plant Physiol Biochem 36:629–635

    Article  CAS  Google Scholar 

  21. Reddy AS, Ranganathan B, Haisler RM, Swize MA (1996) A cDNA encoding acyl-CoA-binding protein from cotton (accession no. U35015). Plant Physiol 111:348 (PGR96-028)

    Article  Google Scholar 

  22. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Suzui N, Nakamura S, Fujiwara T, Hayashi H, Yoneyama T (2006) A putative acyl-CoA-binding protein is a major phloem sap protein in rice (Oryza sativa L.). J Exp Bot 57:2571–2576

    Article  PubMed  CAS  Google Scholar 

  24. Meng W, Su YC, Saunders RM, Chye ML (2011) The rice acyl-CoA-binding protein gene family: phylogeny, expression and functional analysis. New Phytol 189:1170–1184

    Article  PubMed  CAS  Google Scholar 

  25. Meng W, Hsiao AS, Gao C, Jiang L, Chye ML (2014) Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6:GFP is targeted to the peroxisomes. New Phytol 203:469–482

    Article  PubMed  CAS  Google Scholar 

  26. Engeseth NJ, Pacovsky RS, Newman T, Ohlrogge JB (1996) Characterization of an acyl-CoA-binding protein from Arabidopsis thaliana. Arch Biochem Biophys 331:55–62

    Article  PubMed  CAS  Google Scholar 

  27. Chye ML (1998) Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain. Plant Mol Biol 38:827–838

    Article  PubMed  CAS  Google Scholar 

  28. Chye ML, Huang BQ, Zee SY (1999) Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product. Plant J 18:205–214

    Article  PubMed  CAS  Google Scholar 

  29. Chye ML, Li HY, Yung MH (2000) Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14C palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats. Plant Mol Biol 44:711–721

    Article  PubMed  CAS  Google Scholar 

  30. Leung KC, Li HY, Mishra G, Chye ML (2004) ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA. Plant Mol Biol 55:297–309

    Article  PubMed  CAS  Google Scholar 

  31. Leung KC, Li HY, Xiao S, Tse MH, Chye ML (2006) Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein. Planta 223:871–881

    Article  PubMed  CAS  Google Scholar 

  32. Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Raboanatahiry NH, Lu G, Li M (2015) Computational prediction of acyl-CoA Binding proteins structure in Brassica napus. PLoS One 10:e0129650

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raboanatahiry NH, Yin Y, Chen L, Li M (2015) Genome-wide identification and phylogenic analysis of kelch motif containing ACBP in Brassica napus. BMC Genomics 16:512. doi:10.1186/s12864-015-1735-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li HY, Chye ML (2003) Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. Plant Mol Biol 51:483–492

    Article  PubMed  CAS  Google Scholar 

  36. Xiao S, Li HY, Zhang JP, Chan SW, Chye ML (2008) Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol 68:571–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xiao S, Gao W, Chen QF, Chan SW, Zheng SX, Ma J, Wang M, Welti R, Chye ML (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22:1463–1482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xiao S, Chye ML (2011) Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol 156:2069–2081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zheng SX, Xiao S, Chye ML (2012) The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. J Exp Bot 63:2985–3000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li HY, Xiao S, Chye ML (2008) Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. J Exp Bot 59:3997–4006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jones AM, MacLean D, Studholme DJ, Serna-Sanz A, Andreasson E, Rathjen JP, Peck SC (2009) Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. J Proteomics 72:439–451

    Article  PubMed  CAS  Google Scholar 

  42. Ito J, Batth TS, Petzold CJ, Redding-Johanson AM, Mukhopadhyay A, Verboom R, Meyer EH, Millar AH, Heazlewood JL (2011) Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J Proteome Res 10:1571–1582

    Article  PubMed  CAS  Google Scholar 

  43. Meng W, Chye ML (2014) Rice acyl-CoA-binding proteins OsACBP4 and OsACBP5 are differentially localized in the endoplasmic reticulum of transgenic Arabidopsis. Plant Signal Behav 9:e29544

    Article  PubMed Central  CAS  Google Scholar 

  44. Guidotti A, Forchetti CM, Corda MG, Konkel D, Bennett CD, Costa E (1983) Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors. Proc Natl Acad Sci USA 80:3531–3535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hansen JS, Faergeman NJ, Kragelund BB, Knudsen J (2008) Acyl-CoA-binding protein (ACBP) localizes to the endoplasmic reticulum and Golgi in a ligand-dependent manner in mammalian cells. Biochem J 410:463–472

    Article  PubMed  CAS  Google Scholar 

  46. Elle IC, Simonsen KT, Olsen LC, Birck PK, Ehmsen S, Tuck S, Le TT, Faergeman NJ (2011) Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans. Biochem J 437:231–241

    Article  PubMed  CAS  Google Scholar 

  47. Burton M, Rose TM, Faergeman NJ, Knudsen J (2005) Evolution of the acyl-CoA binding protein (ACBP). Biochem J 392:299–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Adams J, Kelso R, Cooley L (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10:17–24

    Article  PubMed  CAS  Google Scholar 

  49. Xiao S, Chen QF, Chye ML (2009) Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis. Plant Signal Behav 4:1063–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yurchenko OP, Nykiforuk CL, Moloney MM, Stahl U, Banas A, Stymne S, Weselake RJ (2009) A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotechnol J 7:602–610

    Article  PubMed  CAS  Google Scholar 

  51. Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  PubMed  CAS  Google Scholar 

  52. Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc 20:934–940

    PubMed  CAS  Google Scholar 

  53. Xiao S, Gao W, Chen QF, Ramalingam S, Chye ML (2008) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J 54:141–151

    Article  PubMed  CAS  Google Scholar 

  54. Gao W, Xiao S, Li HY, Tsao SW, Chye ML (2009) Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol 181:89–102

    Article  PubMed  CAS  Google Scholar 

  55. Xiao S, Chen QF, Chye ML (2009) Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester. Plant Physiol Biochem 47:926–933

    Article  PubMed  CAS  Google Scholar 

  56. Du ZY, Xiao S, Chen QF, Chye ML (2010) Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol 152:1585–1597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gao W, Li HY, Xiao S, Chye ML (2010) Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J 62:989–1003

    PubMed  CAS  Google Scholar 

  58. Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013) Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. Plant J 74:294–309

    Article  PubMed  CAS  Google Scholar 

  59. Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML (2014) Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot 65:5473–5483

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hsiao AS, Haslam RP, Michaelson LV, Liao P, Chen QF, Sooriyaarachchi S, Mowbray SL, Napier JA, Tanner JA, Chye ML (2014) Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 34:865–877

    Article  CAS  Google Scholar 

  61. Xie LJ, Yu LJ, Chen QF, Wang FZ, Huang L, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Yao N, Shu W, Xiao S (2015) Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. Plant J 81:53–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hanhoff T, Lucke C, Spener F (2002) Insights into binding of fatty acids by fatty acid binding proteins. Mol Cell Biochem 239:45–54

    Article  PubMed  CAS  Google Scholar 

  63. Knudsen J, Jensen MV, Hansen JK, Faergeman NJ, Neergaard TB, Gaigg B (1999) Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling. Mol Cell Biochem 192:95–103

    Article  PubMed  CAS  Google Scholar 

  64. Jolly CA, Wilton DC, Schroeder F (2000) Microsomal fatty acyl-CoA transacylation and hydrolysis: fatty acyl-CoA species dependent modulation by liver fatty acyl-CoA binding proteins. Biochim Biophys Acta 1483:185–197

    Article  PubMed  CAS  Google Scholar 

  65. Kannan L, Knudsen J, Jolly CA (2003) Aging and acyl-CoA binding protein alter mitochondrial glycerol-3-phosphate acyltransferase activity. Biochim Biophys Acta 1631:12–16

    Article  PubMed  CAS  Google Scholar 

  66. Yurchenko OP, Weselake RJ (2011) Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. N Biotechnol 28:97–109

    Article  PubMed  CAS  Google Scholar 

  67. Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013) Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ 36:300–314

    Article  PubMed  CAS  Google Scholar 

  68. Hsiao AS, Yeung EC, Ye ZW, Chye ML (2015) The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development. Plant Cell Physiol 56:322–333

    Article  PubMed  Google Scholar 

  69. Xia Y, Yu K, Gao QM, Wilson EV, Navarre D, Kachroo P, Kachroo A (2012) Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes. Front Plant Sci 3:224. doi:10.3389/fpls.2012.00224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liao P, Chen QF, Chye ML (2014) Transgenic Arabidopsis flowers overexpressing acyl-CoA-binding protein ACBP6 are freezing tolerant. Plant Cell Physiol 55:1055–1071

    Article  PubMed  CAS  Google Scholar 

  71. Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M, Chye ML (2010) The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol 186:843–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Evans DE, Taylor PE, Singh MB, Knox RB (1992) The interrelationship between the accumulation of lipids, protein and the level of acyl carrier protein during the development of Brassica napus L. Pollen. Planta 186:343–354

    Article  PubMed  CAS  Google Scholar 

  73. Piffanelli P, Ross JH, Murphy DJ (1997) Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J 11:549–562

    Article  PubMed  CAS  Google Scholar 

  74. Quilichini TD, Grienenberger E, Douglas CJ (2014) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182

    Article  PubMed  CAS  Google Scholar 

  75. Piffanelli P, Ross JH, Murphy D (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  76. Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS (2011) Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. Plant Cell 23:94–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460

    Article  PubMed  CAS  Google Scholar 

  82. de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21:507–525

    Article  CAS  Google Scholar 

  83. Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza Cde A, Heitz T, Douglas CJ, Legrand M (2010) Analysis of TETRAKETIDE a-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ (2010) ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol 154:678–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Choi H, Jin JY, Choi S, Hwang JU, Kim YY, Suh MC, Lee Y (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65:181–193

    Article  PubMed  CAS  Google Scholar 

  86. Wilfling F, Haas JT, Walther TC, Farese RV Jr (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6:e0113. doi:10.1199/tab.0113

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sakaki T, Ohnishi J, Kondo N, Yamada M (1985) Polar and neutral lipid changes in spinach leaves with ozone fumigation: triacylglycerol synthesis from polar lipids. Plant Cell Physiol 26:253–262

    CAS  Google Scholar 

  89. Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228

    Article  PubMed  CAS  Google Scholar 

  90. Lippold F, vom Dorp K, Abraham M, Holzl G, Wewer V, Yilmaz JL, Lager I, Montandon C, Besagni C, Kessler F, Stymne S, Dormann P (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24:2001–2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lung SC, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073–1088

    Article  PubMed  CAS  Google Scholar 

  92. Mandrup S, Sorensen RV, Helledie T, Nohr J, Baldursson T, Gram C, Knudsen J, Kristiansen K (1998) Inhibition of 3T3-L1 adipocyte differentiation by expression of acyl-CoA-binding protein antisense RNA. J Biol Chem 273:23897–23903

    Article  PubMed  CAS  Google Scholar 

  93. Lee L, DeBono CA, Campagna DR, Young DC, Moody DB, Fleming MD (2007) Loss of the acyl-CoA binding protein (ACBP) results in fatty acid metabolism abnormalities in mouse hair and skin. J Investig Dermatol 127:16–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272

    Article  PubMed  CAS  Google Scholar 

  95. Yurchenko O, Singer SD, Nykiforuk CL, Gidda S, Mullen RT, Moloney MM, Weselake RJ (2014) Production of a Brassica napus low-molecular mass acyl-Coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds. Plant Physiol 165:550–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Slack CR, Roughan PG (1975) The kinetics of incorporation in vivo of [14C]acetate and [14C]carbon dioxide into the fatty acids of glycerolipids in developing leaves. Biochem J 152:217–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Simpson EE, Williams JP (1979) Galactolipid Synthesis in Vicia faba leaves: IV. Site(s) of fatty acid incorporation into the major glycerolipids. Plant Physiol 63:674–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Stymne S, Stobart AK (1984) Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and rat liver. Biochem J 223:305–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wang X (2001) Plant phospholipases. Annu Rev Plant Physiol Plant Mol Biol 52:211–231

    Article  PubMed  CAS  Google Scholar 

  100. Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282:31206–31216

    Article  PubMed  CAS  Google Scholar 

  101. Bates PD, Browse J (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3:147. doi:10.3389/fpls.2012.00147

    Article  PubMed  PubMed Central  Google Scholar 

  102. Browse J, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem J 235:25–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    Article  PubMed  CAS  Google Scholar 

  104. Sasaki Y, Kozaki A, Hatano M (1997) Link between light and fatty acid synthesis: thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci USA 94:11096–11101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68:1175–1184

    Article  PubMed  CAS  Google Scholar 

  106. Hsiao AS, Haslam RP, Michaelson LV, Liao P, Napier JA, Chye ML (2014) Gene expression in plant lipid metabolism in Arabidopsis seedlings. PLoS One 9:e107372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Du ZY, Chen MX, Chen QF, Gu JD, Chye ML (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101–117

    Article  PubMed  CAS  Google Scholar 

  108. Bernard A, Joubes J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    Article  PubMed  CAS  Google Scholar 

  109. Lee SB, Suh MC (2013) Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant 6:246–249

    Article  PubMed  CAS  Google Scholar 

  110. Jenks MA, Eigenbrode SD, Lemieux B (2002) Cuticular waxes of Arabidopsis. Arabidopsis Book 1:e0016. doi:10.1199/tab.0016

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nawrath C (2006) Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol 9:281–287

    Article  PubMed  CAS  Google Scholar 

  112. Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  PubMed  CAS  Google Scholar 

  113. Xiao S, Chye ML (2008) Arabidopsis ACBP1 overexpressors are Pb(II)-tolerant and accumulate Pb(II). Plant Signal Behav 3:693–694

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rasmussen JT, Borchers T, Knudsen J (1990) Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters. Biochem J 265:849–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wilson and Amelia Wong Endowment Fund, Research Grants Council of Hong Kong (HKU765813M), University Grants Committee (AoE/M-05/12 and CUHK2/CRF/11G) and the University of Hong Kong (HKU) [CRCG awards 104003169 and 104003561]. ZWY was supported by an HKU University Postgraduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mee-Len Chye.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, ZW., Chye, ML. Plant Cytosolic Acyl-CoA-Binding Proteins. Lipids 51, 1–13 (2016). https://doi.org/10.1007/s11745-015-4103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4103-z

Keywords

Navigation