Skip to main content
Log in

3-Deoxyschweinfurthin B Lowers Cholesterol Levels by Decreasing Synthesis and Increasing Export in Cultured Cancer Cell Lines

  • Original Article
  • Published:
Lipids

Abstract

The schweinfurthins have potent antiproliferative activity in multiple glioblastoma multiforme (GBM) cell lines; however, the mechanism by which growth is impeded is not fully understood. Previously, we demonstrated that the schweinfurthins reduce the level of key isoprenoid intermediates in the cholesterol biosynthetic pathway. Herein, we describe the effects of the schweinfurthins on cholesterol homeostasis. Intracellular cholesterol levels are greatly reduced in cells incubated with 3-deoxyschweinfurthin B (3dSB), an analog of the natural product schweinfurthin B. Decreased cholesterol levels are due to decreased cholesterol synthesis and increased cholesterol efflux; both of these cellular actions can be influenced by liver X-receptor (LXR) activation. The effects of 3dSB on ATP-binding cassette transporter 1 levels and other LXR targets are similar to that of 25-hydroxycholesterol, an LXR agonist. Unlike 25-hydroxycholesterol, 3dSB does not act as a direct agonist for LXR α or β. These data suggest that cholesterol homeostasis plays a significant role in the growth inhibitory activity of the schweinfurthins and may elucidate a mechanism that can be targeted in human cancers such as GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3dSB:

3-Deoxyschweinfurthin B

LXR:

Liver X receptor

NCI60:

National Cancer Institute 60 cell cancer screen

CNS:

Central nervous system

References

  1. Beutler JA, Shoemaker RH, Johnson T, Boyd MR (1998) Cytotoxic geranyl stilbenes from Macaranga schweinfurthii. J Nat Prod 61:1509–1512

    Article  CAS  PubMed  Google Scholar 

  2. Covell DG, Huang RL, Wallqvist A (2007) Anticancer medicines in development: assessment of bioactivity profiles within the National Cancer Institute anticancer screening data. Mol Cancer Ther 6:2261–2270

    Article  CAS  PubMed  Google Scholar 

  3. Beutler JA, Shoemaker RH, Johnson T, Boyd MR (1998) Cytotoxic geranyl stilbenes from Macaranga schweinfurthii. J Nat Prod 61:1509–1512

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  5. Ohka F, Natsume A, Wakabayashi T (2012) Current Trends in Targeted Therapies for Glioblastoma Multiforme. Neurol Res Int 2012:13

    Article  Google Scholar 

  6. Kuder CH, Neighbors JD, Hohl RJ, Wiemer DF (2009) Synthesis and biological activity of a fluorescent schweinfurthin analogue. Bioorganic Med Chem 17:4718–4723

    Article  CAS  Google Scholar 

  7. Mente NR, Neighbors JD, Wiemer DF (2008) BF3 × Et2O-mediated cascade cyclizations: synthesis of schweinfurthins F and G. J Org Chem 73:7963–7970

    Article  CAS  PubMed  Google Scholar 

  8. Mente NR, Wiemer AJ, Neighbors JD, Beutler JA, Hohl RJ, Wiemer DF (2007) Total synthesis of (R, R, R)- and (S, S, S)-schweinfurthin F: differences of bioactivity in the enantiomeric series. Bioorg Med Chem Lett 17:911–915

    Article  CAS  PubMed  Google Scholar 

  9. Neighbors JD, Beutler JA, Wiemer DF (2005) Synthesis of nonracemic 3-deoxyschweinfurthin B. J Org Chem 70:925–931

    Article  CAS  PubMed  Google Scholar 

  10. Neighbors JD, Salnikova MS, Beutler JA, Wiemer DF (2006) Synthesis and structure-activity studies of schweinfurthin B analogs: evidence for the importance of a D-ring hydrogen bond donor in expression of differential cytotoxicity. Bioorg Med Chem 14:1771–1784

    Article  CAS  PubMed  Google Scholar 

  11. Topczewski JJ, Callahan MP, Kodet JG, Inbarasu JD, Mente NR, Beutler JA, Wiemer DF (2011) Relevance of the C-5 position to schweinfurthin induced cytotoxicity. Bioorg Med Chem 19:7570–7581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Topczewski JJ, Kodet JG, Wiemer DF (2011) Exploration of cascade cyclizations terminated by tandem aromatic substitution: total synthesis of (+)-schweinfurthin A. J Org Chem 76:909–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Topczewski JJ, Kuder CH, Neighbors JD, Hohl RJ, Wiemer DF (2010) Fluorescent schweinfurthin B and F analogs with anti-proliferative activity. Bioorg Med Chem 18:6734–6741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Treadwell EM, Neighbors JD, Wiemer DF (2002) A cascade cyclization approach to schweinfurthin B. Org Lett 4:3639–3642

    Article  CAS  PubMed  Google Scholar 

  15. Ulrich NC, Kodet JG, Mente NR, Kuder CH, Beutler JA, Hohl RJ, Wiemer DF (2010) Structural analogues of schweinfurthin F: probing the steric, electronic, and hydrophobic properties of the D-ring substructure. Bioorg Med Chem 18:1676–1683

    Article  CAS  PubMed  Google Scholar 

  16. Ulrich NC, Kuder CH, Hohl RJ, Wiemer DF (2010) Biologically active biotin derivatives of schweinfurthin F. Bioorg Med Chem Lett 20:6716–6720

    Article  CAS  PubMed  Google Scholar 

  17. Turbyville TJ, Gursel DB, Tuskan RG, Walrath JC, Lipschultz CA, Lockett SJ, Wiemer DF, Beutler JA, Reilly KM (2010) Schweinfurthin a selectively inhibits proliferation and Rho signaling in glioma and neurofibromatosis type 1 tumor cells in a NF1-GRD-dependent manner. Mol Cancer Ther 9:1234–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Holstein SA, Kuder CH, Tong H, Hohl RJ (2011) Pleiotropic effects of a schweinfurthin on isoprenoid homeostasis. Lipids 46:907–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Luu W, Sharpe LJ, Gelissen IC, Brown AJ (2013) The role of signalling in cellular cholesterol homeostasis. IUBMB Life 65:675–684

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Rogers PM, Su C, Varga G, Stayrook KR, Burris TP (2008) Regulation of cholesterologenesis by the oxysterol receptor, LXRα. J Biol Chem 283:26332–26339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sorrentino V, Nelson JK, Maspero E, Marques ARA, Scheer L, Polo S, Zelcer N (2013) The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. J Lipid Res 54:2174–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kuder CH, Neighbors JD, Hohl RJ, Wiemer DF (2009) Synthesis and biological activity of a fluorescent schweinfurthin analogue. Bioorg Med Chem 17:4718–4723

    Article  CAS  PubMed  Google Scholar 

  23. Sekiya M, Yamamuro D, Ohshiro T, Honda A, Takahashi M, Kumagai M, Sakai K, Nagashima S, Tomoda H, Igarashi M, Okazaki H, Yagyu H, Osuga J, Ishibashi S (2014) Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages. J Lipid Res 55:2082–2092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kodet JG, Beutler JA, Wiemer DF (2014) Synthesis and structure activity relationships of schweinfurthin indoles. Bioorg Med Chem 22:2542–2552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Neighbors JD, Salnikova MS, Beutler JA, Wiemer DF (2006) Synthesis and structure–activity studies of schweinfurthin B analogs: evidence for the importance of a D-ring hydrogen bond donor in expression of differential cytotoxicity. Bioorg Med Chem 14:1771–1784

    Article  CAS  PubMed  Google Scholar 

  26. Sinensky M, Beck LA, Leonard S, Evans R (1990) Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis. J Biol Chem 265:19937–19941

    CAS  PubMed  Google Scholar 

  27. Kuder CH, Sheehy RM, Neighbors JD, Wiemer DF, Hohl RJ (2012) Functional evaluation of a fluorescent schweinfurthin: mechanism of cytotoxicity and intracellular quantification. Mol Pharmacol 82:9–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Paull KD (1995) Prediction of biochemical mechanism of action from the in vitro antitumor screen of the National Cancer Institute. In: Foye WO (ed) Cancer chemotherapeutic agents. American Chemical Society, Washington, DC, pp 9–45

    Google Scholar 

  29. Beutler JA, Jato J, Cragg G, Wiemer DF, Neighbors JD, Salnikova MS, Hollingshead M, Scudiero DA, McCloud TG (2005) The schweinfurthins: issues in development of a plant-derived anticancer lead. In: Bogers RJ, (ed) Medicinal and aromatic plants. Springer, New York, pp 301–309

  30. Holstein SA, Kuder CH, Tong H, Hohl RJ (2011) Pleiotropic effects of a schweinfurthin on isoprenoid homeostasis. Lipids 46:907–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Heverin M, Meaney S, Lutjohann D, Diczfalusy U, Wahren J, Bjorkhem I (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 46:1047–1052

    Article  CAS  PubMed  Google Scholar 

  32. Maletinska L, Blakely EA, Bjornstad KA, Deen DF, Knoff LJ, Forte TM (2000) Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res 60:2300–2303

    CAS  PubMed  Google Scholar 

  33. Ma DQ, Nutt CL, Shanehsaz P, Peng XJ, Louis DN, Kaetzel DM (2005) Autocrine platelet-derived growth factor-dependent gene expression in glioblastoma cells is mediated largely by activation of the transcription factor sterol regulatory element binding protein and is associated with altered genotype and patient survival in human brain tumors. Cancer Res 65:5523–5534

    Article  CAS  PubMed  Google Scholar 

  34. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731

    Article  CAS  PubMed  Google Scholar 

  35. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  CAS  PubMed  Google Scholar 

  36. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li LP, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Baldan A, Bojanic DD, Edwards PA (2009) The ABCs of sterol transport. J Lipid Res 50:S80–S85

    Article  PubMed Central  PubMed  Google Scholar 

  38. Rohrl C, Eigner K, Winter K, Korbelius M, Obrowsky S, Kratky D, Kovacs WJ, Stangl H (2014) Endoplasmic reticulum stress impairs cholesterol efflux and synthesis in hepatic cells. J Lipid Res 55:94–103

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kuder CH, Sheehy RM, Neighbors JD, Wiemer DF, Hohl RJ (2012) Functional Evaluation of a Fluorescent Schweinfurthin: mechanism of Cytotoxicity and Intracellular Quantification. Mol Pharmacol 82:9–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Castilho G, Okuda LS, Pinto RS, Iborra RT, Nakandakare ER, Santos CX, Laurindo FR, Passarelli M (2012) ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin—reversal by a chemical chaperone. Int J Biochem Cell Biol 44:1078–1086

    Article  CAS  PubMed  Google Scholar 

  41. Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M, Murphy JP, Schwalb DJ, Petrella EC, Cornella-Taracido I, Schirle M, Tallarico JA, Shair MD (2011) Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 7:639–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Bowden K, Ridgway ND (2008) OSBP negatively regulates ABCA1 protein stability. J Biol Chem 283:18210–18217

    Article  CAS  PubMed  Google Scholar 

  43. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S, Babic I, Tanaka K, Dang J, Iwanami A, Gini B, DeJesus J, Lisiero DD, Huang TT, Prins RM, Wen PY, Robins HI, Prados MD, DeAngelis LM, Mellinghoff IK, Mehta MP, James CD, Chakravarti A, Cloughesy TF, Tontonoz P, Mischel PS (2011) An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR—dependent pathway. Cancer Discov 1:442–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Financial Support Statement

This project was supported in part by the Roy J. Carver Charitable Trust, the Roland W. Holden Family Program for Experimental Therapeutics, and the National Institutes of Health (5R42NS069272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Hohl.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuder, C.H., Weivoda, M.M., Zhang, Y. et al. 3-Deoxyschweinfurthin B Lowers Cholesterol Levels by Decreasing Synthesis and Increasing Export in Cultured Cancer Cell Lines. Lipids 50, 1195–1207 (2015). https://doi.org/10.1007/s11745-015-4083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4083-z

Keywords

Navigation