Skip to main content
Log in

Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent

  • Original Article
  • Published:
Lipids

Abstract

The shrimp Rimicaris exoculata is the most abundant species in hydrothermal vents. Lipids, the component of membranes, play an important role in maintaining their function normally in such extreme environments. In order to understand the lipid adaptation of R. exoculata (HV shrimp) to hydrothermal vents, we compared its lipid profile with the coastal shrimp Litopenaeus vannamei (EZ shrimp) which lives in the euphotic zone, using ultra performance liquid chromatography electrospray ionization-quadrupole time-of-flight mass spectrometry. As a result, the following lipid adaptation can be observed. (1) The proportion of 16:1 and 18:1, and non-methylene interrupted fatty acid (48.9 and 6.2 %) in HV shrimp was higher than that in EZ shrimp (12.7 and 0 %). While highly-unsaturated fatty acids were only present in the EZ shrimp. (2) Ceramide and sphingomyelin in the HV shrimp were enriched in d14:1 long chain base (96.5 and 100 %) and unsaturated fatty acids (67.1 and 57.7 %). While in the EZ shrimp, ceramide and sphingomyelin had the tendency to contain d16:1 long chain base (68.7 and 75 %) and saturated fatty acids (100 and 100 %). (3) Triacylglycerol content (1.998 ± 0.005 nmol/mg) in the HV shrimp was higher than that in the EZ shrimp (0.092 ± 0.005 nmol/mg). (4) Phosphatidylinositol and diacylglycerol containing highly-unsaturated fatty acids were absent from the HV shrimp. (5) Lysophosphatidylcholine and lysophosphatidylethanolamine were rarely detected in the HV shrimp. A possible reason for such differences was the result of food resources and inhabiting environments. Therefore, these lipid classes mentioned above may be the biomarkers to compare the organisms from different environments, which will be benefit for the further exploitation of the hydrothermal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

Cer:

Ceramide

CerPCho:

Sphingomyelin

DAG:

Diacylglycerol

DHA:

Docosahexenoic acid

EPA:

Eicosapentaenoic acid

EZ shrimp:

Euphotic zone shrimp

FA:

Fatty acid

HUFA:

Highly-unsaturated fatty acid

HV shrimp:

Hydrothermal vent shrimp

LCB:

Long chain base

LysoPtdCho:

Lysophosphatidylcholine

LysoPtdEtn:

Lysophosphatidylethanolamine

MUFA:

Monounsaturated fatty acid

NMI FA:

Non-methylene interrupted fatty acid

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdIns:

Phosphatidylinositol

SFA:

Saturated fatty acid

TAG:

Triacylglycerol

UFA:

Unsaturated fatty acid

UPLC-ESI-Q-TOF-MS:

Ultra performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry

References

  1. Ballard RD, Corliss JB (1992) Oases of life in the cold abyss. A presentation at the IX Congreso Nacional de Oceanografía

  2. Tunnicliffe V, Fowler CMR (1996) Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379:531–533

    Article  CAS  Google Scholar 

  3. Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press

  4. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    CAS  PubMed  Google Scholar 

  5. Allen CE (1998) Lipid profiles of deep-sea organisms. University of Southampton

  6. Durand L, Zbinden M, Cueff-Gauchard V, Duperron S, Roussel EG, Shilito B, Cambon-Bonavita MA (2010) Microbial diversity associated with the hydrothermal shrimp Rimicaris exoculata gut and occurrence of a resident microbial community. FEMS Microbiol Ecol 71:291–303

    Article  CAS  PubMed  Google Scholar 

  7. Desbruyères D, Almeida A, Biscoito M, Comtet T, Khripounoff A, Le Bris N, Sarradin P, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Island, Ocean and Deep-Sea Biology. Springer, Berlin Heidelberg

    Google Scholar 

  8. Cottin D, Shillito B, Chertemps T, Thatje S, Léger N, Ravaux J (2010) Comparison of heat-shock responses between the hydrothermal vent shrimp Rimicaris exoculata and the related coastal shrimp Palaemonetes varians. J Exp Mar Biol Ecol 393:9–16

    Article  Google Scholar 

  9. Hourdez S, Lallier FH (2007) Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates. Rev Environ Sci Bio/Technol 6:143–159

    Article  CAS  Google Scholar 

  10. Marie B, Genard B, Rees J-F, Zal F (2006) Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Mar Biol 150:273–284

    Article  CAS  Google Scholar 

  11. Ben-Mlih F, Marty J, Fiala-Medioni A (1992) Fatty acid composition in deep hydrothermal vent symbiotic bivalves. J Lipid Res 33:1797–1806

    CAS  PubMed  Google Scholar 

  12. Segonzac M, Desaintlaurent M, Casanova B (1993) Enigma of the trophic adaptation of the shrimp Alvinocarididae in hydrothermal areas along the Mid-Atlantic Ridge. Cah Biol Mar 34:535–571

    Google Scholar 

  13. Van Dover CL (1995) Ecology of mid-Atlantic ridge hydrothermal vents. Geological Society, London, Special Publications 87: 257-294

  14. Copley J, Tyler P, Murton B, Van Dover C (1997) Spatial and interannual variation in the faunal distribution at Broken Spur vent field (29N, Mid-Atlantic Ridge). Mar Biol 129:723–733

    Article  Google Scholar 

  15. Zbinden M, Le Bris N, Gaill F, Compère P (2004) Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes. Mar Ecol Prog Ser 284:237–251

    Article  Google Scholar 

  16. Dowhan W, Bogdanov M (2002) Functional roles of lipids in membranes. New Compr Biochem 36:1–35

    Article  CAS  Google Scholar 

  17. Wang X (2004) Lipid signaling. Curr Opin Plant Biol 7:329–336

    Article  CAS  PubMed  Google Scholar 

  18. Eyster KM (2007) The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ 31:5–16

    Article  PubMed  Google Scholar 

  19. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol 51:730–737

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Pond DW, Gebruk A, Southward EC, Southward AJ (2000) Unusual fatty acid composition of storage lipids in the bresilioid shrimp Rimicaris exoculata couples the photic zone with MAR hydrothermal vent sites. Mar Ecol Prog Ser 198:171–179

    Article  CAS  Google Scholar 

  21. Allen CE, Copley JT, Tyler PA (2001) Lipid partitioning in the hydrothermal vent shrimp Rimicaris exoculata. Mar Ecol 22:241–253

    Article  CAS  Google Scholar 

  22. Yamanaka T, Sakata S (2004) Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean. Org Geochem 35:573–582

    Article  CAS  Google Scholar 

  23. Colaço A, Desbruyeres D, Guezennec J (2007) Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community. Mar Ecol 28:15–24

    Article  Google Scholar 

  24. Gibson R, van der Meer M, Hopmans E, Reysenbach AL, Schouten S, Sinninghe Damste J (2013) Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. Geobiology 11:72–85

    Article  CAS  PubMed  Google Scholar 

  25. Yan X, Xu J, Chen J, Chen D, Xu S, Luo Q, Wang Y (2012) Lipidomics focusing on serum polar lipids reveals species dependent stress resistance of fish under tropical storm. Metabolomics 8:299–309

    Article  CAS  Google Scholar 

  26. Li S, Xu J, Chen J, Chen J, Zhou C, Yan X (2014) The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture 428:104–110

    Article  Google Scholar 

  27. Wang X, Zhao P, Luo Q, Yan X, Xu J, Chen J, Chen H (2014) Metabolite changes during the life history of Porphyra haitanensis. Plant Biol 17:660–666

    Article  PubMed  Google Scholar 

  28. Goulitquer S, Potin P, Tonon T (2012) Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 10:849–880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hsu F-F, Turk J (2003) Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 14:352–363

    Article  CAS  PubMed  Google Scholar 

  30. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  CAS  PubMed  Google Scholar 

  31. Yan X, Li H, Xu J, Zhou C (2010) Analysis of phospholipids in microalga Nitzschia closterium by UPLC-Q-TOF-MS. Chin J Oceanol Limnol 28:106–112

    Article  CAS  Google Scholar 

  32. Hsu F-F, Turk J (2000) Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 11:437–449

    Article  CAS  PubMed  Google Scholar 

  33. Masukawa Y, Tsujimura H, Narita H (2006) Liquid chromatography-mass spectrometry for comprehensive profiling of ceramide molecules in human hair. J Lipid Res 47:1559–1571

    Article  CAS  PubMed  Google Scholar 

  34. Danielewicz MA, Anderson LA, Franz AK (2011) Triacylglycerol profiling of marine microalgae by mass spectrometry. J Lipid Res 52:2101–2108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Li S, Xu J, Chen J, Chen J, Zhou C et al (2014) Characterization of the triacylglycerol profile in marine diatoms by ultra performance liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight mass spectrometry. J Appl Phycol 26:1389–1398

    Article  CAS  Google Scholar 

  36. Sommer U, Herscovitz H, Welty FK, Costello CE (2006) LC-MS-based method for the qualitative and quantitative analysis of complex lipid mixtures. J Lipid Res 47:804–814

    Article  CAS  PubMed  Google Scholar 

  37. Yan X, Chen D, Xu J, Zhou C (2011) Profiles of photosynthetic glycerolipids in three strains of Skeletonema determined by UPLC-Q-TOF-MS. J Appl Phycol 23:271–282

    Article  CAS  Google Scholar 

  38. Sargent J (1976) Structure, metabolism and function of lipids in marine organisms. Biochem Biophys Perspect Mar Biol

  39. Jannasch HW (1983) Microbial processes at deep sea hydrothermal vents. Hydrothermal processes at seafloor spreading centers. Springer, Berlin Heidelberg

    Google Scholar 

  40. Fullarton JG, Dando PR, Sargent JR, Southwards AJ, Southward EC (1995) Fatty acids of hydrothermal vent Ridgeia piscesae and inshore bivalves containing symbiotic bacteria. J Mar Biol Assoc U K 75:455–468

    Article  CAS  Google Scholar 

  41. Pranal V, Fiala-Medioni A, Guezennec J (1997) Fatty acid characteristics in two symbiont-bearing mussels from deep-sea hydrothermal vents of the south-western Pacific. J Mar Biol Assoc U K 77:473–492

    Article  CAS  Google Scholar 

  42. Pond DW, Allen CE, Bell MV, Van Dover CL, Fallick AE, Dixon DR, Sargent JR (2002) Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent worms Ridgea piscesae and Protis hydrothermica. Mar Ecol Prog Ser 225:219–226

    Article  CAS  Google Scholar 

  43. Tou JC, Jaczynski J, Chen Y-C (2007) Krill for human consumption: nutritional value and potential health benefits. Nutr Rev 65:63–77

    Article  PubMed  Google Scholar 

  44. Chen D-W, Zhang M, Shrestha S (2007) Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chem 103:1343–1349

    Article  CAS  Google Scholar 

  45. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta (BBA)-Biomembr 1758:1864–1884

    Article  CAS  Google Scholar 

  46. Fyrst H, Zhang X, Herr DR, Byun HS, Bittman R, Phan VH, Harris G, Saba JD (2008) Identification and characterization by electrospray mass spectrometry of endogenous Drosophila sphingadienes. J Lipid Res 49:597–606

    Article  CAS  PubMed  Google Scholar 

  47. Maula T, Artetxe I, Grandell P-M, Slotte JP (2012) Importance of the sphingoid base length for the membrane properties of ceramides. Biophys J 103:1870–1879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Patterson GW (1970) Effect of culture temperature on fatty acid composition of Chlorella sorokiniana. Lipids 5:597–600

    Article  CAS  PubMed  Google Scholar 

  49. Pinto SN, Silva LC, Futerman AH, Prieto M (2011) Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim Biophys Acta (BBA)-Biomembr 1808:2753–2760

    Article  CAS  Google Scholar 

  50. Hopkins C, Sargent J, Nilssen E (1993) Total lipid content, and lipid and fatty acid composition of the deep-water prawn Pandalus borealis from Balsfjord, northern Norway: growth and feeding relationships. Mar Ecol Prog Ser 96:217

    Article  CAS  Google Scholar 

  51. Phleger CF, Nelson MM, Groce AK, Cary SC, Coyne KJ, Nichols PD (2005) Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comp Biochem Physiol Part B: Biochem Mol Biol 141:196–210

    Article  Google Scholar 

  52. Corda D, Zizza P, Varone A, Bruzik K, Mariggi S (2012) The glycerophosphoinositols and their cellular functions. Biochem Soc Trans 40:101

    Article  CAS  PubMed  Google Scholar 

  53. Fukami K, Inanobe S, Kanemaru K, Nakamura Y (2010) Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res 49:429–437

    Article  CAS  PubMed  Google Scholar 

  54. Goñi FM, Alonso A (1999) Structure and functional properties of diacylglycerols in membranes 1. Prog Lipid Res 38:1–48

    Article  PubMed  Google Scholar 

  55. Gómez-Fernández JC, Corbalán-García S (2007) Diacylglycerols, multivalent membrane modulators. Chem Phys Lipids 148:1–25

    Article  PubMed  Google Scholar 

  56. Gardell SE, Dubin AE, Chun J (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12:65–75

    Article  CAS  PubMed  Google Scholar 

  57. Watterson KR, Lanning DA, Diegelmann RF, Spiegel S (2007) Regulation of fibroblast functions by lysophospholipid mediators: potential roles in wound healing. Wound Repair Regen 15:607–616

    Article  PubMed  Google Scholar 

  58. Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the State Key Development Program of Basic Research of China (973 Program) (No. 2015CB755902), and Foundation of China Ocean Mineral Resources R&D Association (No. DY125-11-E-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Yan or Jilin Xu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Ye, M., Yan, X. et al. Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent. Lipids 50, 1233–1242 (2015). https://doi.org/10.1007/s11745-015-4081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4081-1

Keywords

Navigation