Skip to main content

Advertisement

Log in

Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells

  • Original Article
  • Published:
Lipids

Abstract

The human blood–brain barrier (BBB) is the restrictive barrier between the brain parenchyma and the circulating blood and is formed in part by microvessel endothelial cells. The brain contains significant amounts of arachidonic acid (ARA), and docosahexaenoic acid (DHA), which potentially give rise to the generation of bioactive oxylipins. Oxylipins are oxygenated fatty acid metabolites that are involved in an assortment of biological functions regulating neurological health and disease. Since it is not known which oxylipins are generated by human brain microvessel endothelial cells (HBMECs), they were incubated for up to 30 min in the absence or presence of 0.1-mM ARA, eicosapentaenoic acid (EPA) or DHA bound to albumin (1:1 molar ratio), and the oxylipins generated were examined using high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Of 135 oxylipins screened in the media, 63 were present at >0.1 ng/mL at baseline, and 95 were present after incubation with fatty acid. Oxylipins were rapidly generated and reached maximum levels by 2–5 min. While ARA, EPA and DHA each stimulated the production of oxylipins derived from these fatty acids themselves, ARA also stimulated the production of oxylipins from endogenous 18- and 20-carbon fatty acids, including α-linolenic acid. Oxylipins generated by the lipoxygenase pathway predominated both in resting and stimulated states. Oxylipins formed via the cytochrome P450 pathway were formed primarily from DHA and EPA, but not ARA. These data indicate that HBMECs are capable of generating a plethora of bioactive lipids that have the potential to modulate BBB endothelial cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid (20:4n-6)

ALA:

α-Linolenic acid (18:3n-3)

BBB:

Blood–brain barrier

BSA:

Bovine serum albumin

COX:

Cyclooxygenase

CYP:

Cytochrome P450

DGLA:

Dihomo-γ-linolenic acid (20:3n-6)

DHA:

Docosahexaenoic acid (22:6n-3)

DiHDPE:

Dihydroxy-docosapentaenoic acid

DiHETE:

Dihydroxy-eicosatetraenoic acid

DiHETrE:

Dihydroxy-eicosatrienoic acid

DiHOME:

Dihydroxy-octadecenoic acid

EDA:

Eicosadienoic acid (20:2n-6)

EPA:

Eicosapentaenoic acid (20:5n-3)

EpDPE:

Epoxy-docosapentaenoic acid

EpODE:

Epoxy-octadecadienoic acid

EpOME:

Epoxy-octadecenoic acid

GLA:

γ-Linolenic acid (18:3n-6)

HBMEC:

Human brain microvessel endothelial cells

HDoHE:

Hydroxy-docosahexaenoic acid

HEPE:

Hydroxy-eicosapentaenoic acid

HETE:

Hydroxy-eicosatetraenoic acid

HETrE:

Hydroxy-eicosatrienoic acid

HHTrE:

Hydroxy-heptadecatrienoic acid

HODE:

Hydroxy-octadecadienoic acid

HOTrE:

Hydroxy-octadecatrienoic acid

HX:

Hepoxilin

LNA:

Linoleic acid (18:2n-6)

LOX:

Lipoxygenase

LT:

Leukotriene

LX:

Lipoxin

MEA:

Mead acid (20:3n-9)

MaR:

Maresin

NE:

Non enzymatic products

oxo-ETE:

Oxo-eicosatetraenoic acid

oxo-ODE:

Oxo-octadecadienoic acid

oxo-OTrE:

Oxo-octadecatrienoic acid

PD:

Protectin

PG:

Prostaglandin

PUFA:

Polyunsaturated fatty acid

Rv:

Resolvin

TriHOME:

Trihydroxy-octadecenoic acid

TX:

Thromboxane

References

  1. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  2. Dalvi S, On N, Nguyen H, Pogorzelec M, Miller DW, Hatch GM (2014) The blood–brain barrier: regulation of fatty acid and drug transport. In: Heinbockel T (ed) Neurochemistry. InTech, Rijeka, pp 1–58

    Google Scholar 

  3. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F (1991) A cell culture model of the blood–brain barrier. J Cell Biol 115:1725–1735

    Article  CAS  PubMed  Google Scholar 

  4. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood–brain barrier. Brain Res Rev 36:258–264

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735–746

    Article  CAS  PubMed  Google Scholar 

  6. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nature Rev Neurosci 7:41–53

    Article  CAS  Google Scholar 

  7. Dalvi D, Nguyen H, Mitchel RW, On N, Aukema HM, Miller DW, Hatch GM (2015) Exogenous arachidonic acid mediates permeability of human brain microvessel endothelial cells. J Neurochem. doi:10.1111/jnc.13117 (Epub ahead of print)

    PubMed  Google Scholar 

  8. Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297:1051–1058

    CAS  PubMed  Google Scholar 

  9. Trickler WJ, Mayhan W, Miller DW (2005) Brain microvessel endothelial cell responses to tumor necrosis factor-alpha involve a nuclear factor kappa B (NF-kappaB) signal transduction pathway. Brain Res 1048:24–31

    Article  CAS  PubMed  Google Scholar 

  10. Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–636

    Article  CAS  PubMed  Google Scholar 

  11. McNamara RK, Carlson SE (2006) Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fat Acids 75:329–349

    Article  CAS  Google Scholar 

  12. Chan PH, Fishman RA, Longar S, Chen S, Yu A (1985) Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury. Prog Brain Res 63:227–236

    Article  CAS  PubMed  Google Scholar 

  13. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM (2015) Advances in our understanding of oxylipins derived from dietary polyunsaturated fatty acids. Adv Nutr 6(5):513–540 (Epub ahead of print)

    Article  CAS  PubMed  Google Scholar 

  14. Picq M, Chen P, Perez M, Michaud M, Vericel E, Guichardant M, Lagarde M (2010) DHA metabolism: targeting the brain and lipoxygenation. Mol Neurobiol 42:48–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouellet M, Emond V, Chen CT, Julien C, Bourasset F, Oddo S, LaFerla F, Bazinet RP, Calon F (2009) Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood–brain barrier: an in situ cerebral perfusion study. Neurochem Int 55:476–482

    Article  CAS  PubMed  Google Scholar 

  16. Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801:1260–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burgess JR, Stevens L, Zhang W, Peck L (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr 71(1 Suppl):327S–330S

    CAS  PubMed  Google Scholar 

  18. Kim H-Y (2007) Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282:18661–18665

    Article  CAS  PubMed  Google Scholar 

  19. Caligiuri SP, Love K, Winter T, Gauthier J, Taylor CG, Blydt-Hansen T, Zahradka P, Aukema HM (2013) Dietary linoleic acid and alpha-linolenic acid differentially affect renal oxylipins and phospholipid fatty acids in diet-induced obese rats. J Nutr 143:1421–1431

    Article  CAS  PubMed  Google Scholar 

  20. Dumlao DS, Buczynski MW, Norris PC, Harkewicz R, Dennis EA (2011) High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. Biochim Biophys Acta 1811:724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nilsson LB, Eklund G (2007) Direct quantification in bioanalytical LC–MS/MS using internal calibration via analyte/stable isotope ratio. J Pharm Biomed Anal 43:1094–1099

    Article  CAS  PubMed  Google Scholar 

  22. Chan PH, Fishman RA, Caronna J, Schmidley JW, Prioleau G, Lee J (1983) Induction of brain edema following intracerebral injection of arachidonic acid. Ann Neurol 13:625–632

    Article  CAS  PubMed  Google Scholar 

  23. Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138:2515–2520

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bosetti F (2007) Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models. J Neurochem 102:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McGuire TR, Hoie E, Trickler WJ, Vranna A, Miller DW (2003) Release of prostaglandin E-2 in bovine brain endothelial cells after exposure to three unique forms of the antifungal drug amphotericin-B: role of COX-2 in amphotericin-B induced fever. Life Sci 72:2581–2590

    Article  CAS  PubMed  Google Scholar 

  26. Roth J, Blatties CM (2014) Mechanisms of fever production and lysis: lessons from experimental LPS fever. Compr Physiol 4:1563–1604

    Article  PubMed  Google Scholar 

  27. Blanchard HC, Taha AY, Rapoport SI, Yuan ZX (2015) Low-dose aspirin (acetylsalicylate) prevents increases in brain PGE2, 15-epi-lipoxin A4 and 8-isoprostane concentrations in 9 month-old HIV-1 transgenic rats, a model for HIV-1 associated neurocognitive disorders. Prostaglandins Leukot Essent Fat Acids 96:25–30

    Article  CAS  Google Scholar 

  28. Johansson JU, Woodling NS, Wang Q, Panchal M, Liang X, Trueba-Saiz A, Brown HD, Mhatre SD, Loui T, Andreasson KI (2015) Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models. J Clin Invest 125:350–364

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fiebich BL, Akter S, Akundi RS (2014) The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci. 8:260

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Rivest S (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J Neurochem 76:855–864

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Wang H, Zhu Y, Chen L, Qu Y, Zhu Y (2012) The protective effect of nordihydroguaiaretic acid on cerebral ischemia/reperfusion injury is mediated by the JNK pathway. Brain Res 1445:73–81

    Article  CAS  PubMed  Google Scholar 

  32. Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39:2538–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun L, Xu YW, Han J, Liang H, Wang N, Cheng Y (2015) 12/15-Lipoxygenase metabolites of arachidonic acid activate PPAR gamma: a possible neuroprotective effect in ischemic brain. J Lipid Res 56:502–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flamand N, Mancuso P, Serezani CHC, Brock TG (2007) Leukotrienes: mediators that have been typecast as villains. Cell Mol Life Sci 64:2657–2670

    Article  CAS  PubMed  Google Scholar 

  35. Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y, Serhan CN (2006) Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J 20:1785–1792

    Article  CAS  PubMed  Google Scholar 

  36. Zhu YL, Zhang SJ, Deng YM, Dong XW, Jiang JX, Xie QM (2010) Leukotriene B4, administered via intracerebroventricular injection, attenuates the antigen-induced asthmatic response in sensitized guinea pigs. J Neuroinflammation 7:12. doi:10.1186/1742-2094-7-12

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bertin J, Barat C, Belanger D, Tremblay MJ (2012) Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells. J Neuroinflamm 9:55. doi:10.1186/1742-2094-9-55

    Article  CAS  Google Scholar 

  38. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Ann Rev Immunol 25:101–137

    Article  CAS  Google Scholar 

  39. Serhan CN (2005) Novel eicosanoids and docosanoid mediators: resolvins, docosatrienes and neuroprotectins. Curr Opin Clin Nutr Metab Care 8:115–121

    Article  CAS  PubMed  Google Scholar 

  40. Serhan CN, Chiang N (2008) Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol 153:S200–S215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    Article  CAS  PubMed  Google Scholar 

  42. Wu L, Miao S, Zou LB, Wu P, Hao H, Tang K, Zeng P, Xiong J, Li HH, Wu Q, Cai L, Ye DY (2012) Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci 48:185–200

    Article  CAS  PubMed  Google Scholar 

  43. Yoshida Y, Hayakawa M, Habuchi Y, Niki E (2006) Evaluation of the dietary effects of coenzyme Q in vivo by the oxidative stress marker, hydroxyoctadecadienoic acid and its stereoisomer ratio. Biochim Biophys Acta 1760:1558–1568

    Article  CAS  PubMed  Google Scholar 

  44. Spector AA, Kim HY (2015) Cytochrome P epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta 1851:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, Hammock BD (2010) Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res 51:3481–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Igarashi M, Ma K, Gao F, Kim HW, Greenstein D, Rapoport SI, Rao JS (2010) Brain lipid concentrations in bipolar disorder. J Psychiatr Res 44:177–182

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Sciences and Engineering Research Council (NSERC) grants (to H.M.A, D.W.M, and G.M.H). G.M.H. is a Canada Research Chair in molecular cardiolipin metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant M. Hatch.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aukema, H.M., Winter, T., Ravandi, A. et al. Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells. Lipids 51, 591–599 (2016). https://doi.org/10.1007/s11745-015-4074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4074-0

Keywords

Navigation