Skip to main content

Advertisement

Log in

Impact of a Standard Rodent Chow Diet on Tissue n-6 Fatty Acids, Δ9-Desaturation Index, and Plasmalogen Mass in Rats Fed for One Year

  • Original Article
  • Published:
Lipids

Abstract

Although many studies focus on senescence mechanisms, few habitually consider age as a biological parameter. Considering the effect of interactions between food and age on metabolism, here we depict the lipid framework of 12 tissues isolated from Sprague–Dawley rats fed standard rodent chow over 1 year, an age below which animals are commonly studied. The aim is to define relevant markers of lipid metabolism influenced by age in performing a fatty acid (FA) and dimethylacetal profile from total lipids. First, our results confirm impregnation of adipose and muscular tissues with medium-chain FA derived from maternal milk during early infancy. Secondly, when animals were switched to standard croquettes, tissues were remarkably enriched in n-6 FA and especially 18:2n-6. This impregnation over time was coupled with a decrease of the desaturation index and correlated with lower activities of hepatic Δ5- and Δ6-desaturases. In parallel, we emphasize the singular status of testis, where 22:5n-6, 24:4n-6, and 24:5n-6 were exceptionally accumulated with growth. Thirdly, 18:1n-7, usually found as a discrete FA, greatly accrued over the course of time, mostly in liver and coupled with Δ9-desaturase expression. Fourthly, skeletal muscle was characterized by a surprising enrichment of 22:6n-3 in adults, which tended to decline in older rats. Finally, plasmalogen-derived dimethylacetals were specifically abundant in brain, erythrocytes, lung, and heart. Most notably, a shift in the fatty aldehyde moiety was observed, especially in brain and erythrocytes, implying that red blood cell analysis could be a good indicator of brain plasmalogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FA:

Fatty acid

8d:

8 days old

3w:

3 weeks old

4m:

4 months old

1y:

1 year old

RBC:

Red blood cells

WAT:

White adipose tissue

BAT:

Brown adipose tissue

MD:

Methylated derivative

FAME:

Fatty acid methyl ester

DMA:

Dimethylacetal

GC-MS:

Gas chromatography–mass spectrometry

MCFA:

Medium-chain fatty acid

MUFA:

Monounsaturated fatty acid

References

  1. Bao Q, Pan J, Qi H, Wang L, Qian H, Jiang F, Shao Z, Xu F, Tao Z, Ma Q, Nelson P, Hu X (2014) Aging and age-related diseases—from endocrine therapy to target therapy. Mol Cell Endocrinol 394:115–118. doi:10.1016/j.mce.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  2. Doty RL, Kamath V (2014) The influences of age on olfaction: a review. Front Psychol. doi:10.3389/fpsyg.2014.00020

    PubMed Central  PubMed  Google Scholar 

  3. Gkikas I, Petratou D, Tavernarakis N (2014) Longevity pathways and memory aging. Front Genet. doi:10.3389/fgene.2014.00155

    PubMed Central  PubMed  Google Scholar 

  4. Pawelec G (2014) Immunosenenescence: role of cytomegalovirus. Exp Gerontol 54:1–5. doi:10.1016/j.exger.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  5. Calder PC (2007) Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fat Acids 77:327–335. doi:10.1016/j.plefa.2007.10.015

    Article  CAS  Google Scholar 

  6. Dessì M, Noce A, Bertucci P, Manca di Villahermosa S, Zenobi R, Castagnola V, Addessi E, Di Daniele N (2013) Atherosclerosis, dyslipidemia, and inflammation: the significant role of polyunsaturated fatty acids. ISRN Inflamm 2013:1–13. doi:10.1155/2013/191823

    Article  Google Scholar 

  7. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875. doi:10.1126/science.294.5548.1871

    Article  CAS  PubMed  Google Scholar 

  8. Haeggström JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111:5866–5898. doi:10.1021/cr200246d

    Article  PubMed  Google Scholar 

  9. Smyth EM, Grosser T, Wang M, Yu Y, Fitzgerald GA (2008) Prostanoids in health and disease. J Lipid Res 50:S423–S428. doi:10.1194/jlr.R800094-JLR200

    Article  PubMed  Google Scholar 

  10. Buckley CD, Gilroy DW, Serhan CN (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40:315–327. doi:10.1016/j.immuni.2014.02.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101. doi:10.1038/nature13479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Weylandt KH, Chiu C-Y, Gomolka B, Waechter SF, Wiedenmann B (2012) Omega-3 fatty acids and their lipid mediators: towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat 97:73–82. doi:10.1016/j.prostaglandins.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  13. Lagarde M, Véricel E, Liu M, Chen P, Guichardant M (2014) Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: poxytrins as a class of bioactive derivatives. Biochimie 107 Pt A:91–94. doi: 10.1016/j.biochi.2014.09.008

  14. Durand T, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM (2011) Isoprostanes and phytoprostanes: bioactive lipids. Biochimie 93:52–60. doi:10.1016/j.biochi.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  15. Wallner S, Schmitz G (2011) Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 164:573–589. doi:10.1016/j.chemphyslip.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  16. da Silva TF, Sousa VF, Malheiro AR, Brites P (2012) The importance of ether-phospholipids: a view from the perspective of mouse models. Biochim Biophys Acta BBA Mol Basis Dis 1822:1501–1508. doi:10.1016/j.bbadis.2012.05.014

    Article  Google Scholar 

  17. Pedrono F, Blanchard H, Kloareg M, D’andréa S, Daval S, Rioux V, Legrand P (2010) The fatty acid desaturase 3 gene encodes for different FADS3 protein isoforms in mammalian tissues. J Lipid Res 51:472–479. doi:10.1194/jlr.M000588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Blanchard H, Pédrono F, Boulier-Monthéan N, Catheline D, Rioux V, Legrand P (2013) Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. Prostaglandins Leukot Essent Fat Acids PLEFA 88:383–389. doi:10.1016/j.plefa.2013.03.006

    Article  CAS  Google Scholar 

  19. Aw TY, Grigor MR (1980) Digestion and absorption of milk triacylglycerols in 14-day-old suckling rats. J Nutr 110:2133–2140

    CAS  PubMed  Google Scholar 

  20. Bernard A, Carlier H (1991) Absorption and intestinal catabolism of fatty acids in the rat: effect of chain length and unsaturation. Exp Physiol 76:445–455

    Article  CAS  PubMed  Google Scholar 

  21. Odle J (1997) New insights into the utilization of medium-chain triglycerides by the neonate: observations from a piglet model. J Nutr 127:1061–1067

    CAS  PubMed  Google Scholar 

  22. Staggers JE, Fernando-Warnakulasuriya GJ, Wells MA (1981) Studies on fat digestion, absorption, and transport in the suckling rat. II. Triacylglycerols: molecular species, stereospecific analysis, and specificity of hydrolysis by lingual lipase. J Lipid Res 22:675–679

    CAS  PubMed  Google Scholar 

  23. Davis JT, Bridges RB, Coniglio JG (1966) Changes in lipid composition of the maturing rat testis. Biochem J 98:342–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Koeberle A, Shindou H, Harayama T, Yuki K, Shimizu T (2012) Polyunsaturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. FASEB J 26:169–180. doi:10.1096/fj.11-184879

    Article  CAS  PubMed  Google Scholar 

  25. Furland NE, Zanetti SR, Oresti GM, Maldonado EN, Aveldaño MI (2007) Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells. J Biol Chem 282:18141–18150. doi:10.1074/jbc.M700708200

    Article  CAS  PubMed  Google Scholar 

  26. Saether T, Tran TN, Rootwelt H, Christophersen BO, Haugen TB (2003) Expression and regulation of delta5-desaturase, delta6-desaturase, stearoyl-coenzyme A (CoA) desaturase 1, and stearoyl-CoA desaturase 2 in rat testis. Biol Reprod 69:117–124. doi:10.1095/biolreprod.102.014035

    Article  CAS  PubMed  Google Scholar 

  27. Huyghe S, Schmalbruch H, De Gendt K, Verhoeven G, Guillou F, Van Veldhoven PP, Baes M (2006) Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and male fertility in mice. Endocrinology 147:2228–2236. doi:10.1210/en.2005-1571

    Article  CAS  PubMed  Google Scholar 

  28. Stoffel W, Holz B, Jenke B, Binczek E, Günter RH, Kiss C, Karakesisoglou I, Thevis M, Weber AA, Arnhold S, Addicks K (2008) Delta6-desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J 27:2281–2292. doi:10.1038/emboj.2008.156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Stroud CK, Nara TY, Roqueta-Rivera M, Radlowski EC, Lawrence P, Zhang Y, Cho BH, Segre M, Hess RA, Brenna JT, Haschek WM, Nakamura MT (2009) Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration. J Lipid Res 50:1870–1880. doi:10.1194/jlr.M900039-JLR200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Merrells KJ, Blewett H, Jamieson JA, Taylor CG, Suh M (2009) Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing rats. Br J Nutr 102:226–232. doi:10.1017/S0007114508159037

    Article  CAS  PubMed  Google Scholar 

  31. Zanetti SR, Monclus M, de los Á, Rensetti DE, Fornés MW, Aveldaño MI (2010) Differential involvement of rat sperm choline glycerophospholipids and sphingomyelin in capacitation and the acrosomal reaction. Biochimie 92:1886–1894. doi:10.1016/j.biochi.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  32. Furland NE, Maldonado EN, Aveldaño MI (2003) Very long chain PUFA in murine testicular triglycerides and cholesterol esters. Lipids 38:73–80

    Article  CAS  PubMed  Google Scholar 

  33. Hortobágyi T, Zheng D, Weidner M, Lambert NJ, Westbrook S, Houmard JA (1995) The influence of aging on muscle strength and muscle fiber characteristics with special reference to eccentric strength. J Gerontol A Biol Sci Med Sci 50:B399–B406

    Article  PubMed  Google Scholar 

  34. Doherty TJ (2001) The influence of aging and sex on skeletal muscle mass and strength. Curr Opin Clin Nutr Metab Care 4:503–508

    Article  CAS  PubMed  Google Scholar 

  35. Houmard JA, Weidner ML, Gavigan KE, Tyndall GL, Hickey MS, Alshami A (1998) Fiber type and citrate synthase activity in the human gastrocnemius and vastus lateralis with aging. J Appl Physiol Bethesda MD 1985 85:1337–1341

    CAS  Google Scholar 

  36. Park S-K, Prolla TA (2005) Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 66:205–212. doi:10.1016/j.cardiores.2005.01.005

    Article  CAS  PubMed  Google Scholar 

  37. Early RJ, Spielman SP (1995) Muscle respiration in rats is influenced by the type and level of dietary fat. J Nutr 125:1546–1553

    CAS  PubMed  Google Scholar 

  38. Mickleborough TD (2013) Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab 23:83–96

    CAS  PubMed  Google Scholar 

  39. Poudyal H, Panchal SK, Ward LC, Brown L (2013) Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem 24:1041–1052. doi:10.1016/j.jnutbio.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  40. Smink W, Verstegen MWA, Gerrits WJJ (2013) Effect of intake of linoleic acid and α-linolenic acid levels on conversion into long-chain polyunsaturated fatty acids in backfat and in intramuscular fat of growing pigs. J Anim Physiol Anim Nutr 97:558–565. doi:10.1111/j.1439-0396.2012.01296.x

    Article  CAS  Google Scholar 

  41. Peoples GE, McLennan PL (2010) Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb. Br J Nutr 104:1771–1779. doi:10.1017/S0007114510002928

    Article  CAS  PubMed  Google Scholar 

  42. Cha SH, Fukushima A, Sakuma K, Kagawa Y (2001) Chronic docosahexaenoic acid intake enhances expression of the gene for uncoupling protein 3 and affects pleiotropic mRNA levels in skeletal muscle of aged C57BL/6NJcl mice. J Nutr 131:2636–2642

    CAS  PubMed  Google Scholar 

  43. Lee M-S, Kim I-H, Kim Y (2013) Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2)C(12) muscle cells. Nutrients 5:1660–1671. doi:10.3390/nu5051660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Casanova E, Baselga-Escudero L, Ribas-Latre A, Arola-Arnal A, Bladé C, Arola L, Salvadó MJ (2014) Omega-3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat. Biofactors Oxf Engl 40:146–156. doi:10.1002/biof.1129

    Article  CAS  Google Scholar 

  45. Block R, Kakinami L, Liebman S, Shearer GC, Kramer H, Tsai M (2012) Cis-vaccenic acid and the Framingham risk score predict chronic kidney disease: the multi-ethnic study of atherosclerosis (MESA). Prostaglandins Leukot Essent Fat Acids 86:175–182. doi:10.1016/j.plefa.2012.02.009

    Article  CAS  Google Scholar 

  46. Tanaka S, Kojiguchi C, Yamazaki T, Mitsumoto A, Kobayashi D, Kudo N, Kawashima Y (2013) Altered fatty acid profile in the liver and serum of stroke-prone spontaneously hypertensive rats: reduced proportion of cis-vaccenic acid. J Oleo Sci 62:933–948

    Article  CAS  PubMed  Google Scholar 

  47. Djoussé L, Matsumoto C, Hanson NQ, Weir NL, Tsai MY, Gaziano JM (2014) Plasma cis-vaccenic acid and risk of heart failure with antecedent coronary heart disease in male physicians. Clin Nutr 33:478–482. doi:10.1016/j.clnu.2013.07.001

    Article  PubMed Central  PubMed  Google Scholar 

  48. Tripathy S, Jump DB (2013) Elovl5 regulates the mTORC2-Akt-FOXO1 pathway by controlling hepatic cis-vaccenic acid synthesis in diet-induced obese mice. J Lipid Res 54:71–84. doi:10.1194/jlr.M028787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Brites P, Waterham HR, Wanders RJA (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231. doi:10.1016/j.bbalip.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  50. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  CAS  PubMed  Google Scholar 

  51. Favrelière S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriou A, Durand G (2003) DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiol Aging 24:233–243

    Article  PubMed  Google Scholar 

  52. Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci 91:10635–10639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Xu YF, O K, Choy PC (1994) Plasmenylcholine (1-O-alk-1′-enyl-2-acyl-sn-glycero-3-phosphocholine) biosynthesis in guinea-pig heart and liver: cholinephosphotransferase is a bifunctional enzyme for the synthesis of phosphatidylcholine and plasmenylcholine. Biochem J 301(Pt 1):131–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Labadaridis I, Moraitou M, Theodoraki M, Triantafyllidis S, Sarafidou J (1992) Michelakakis H (2009) Plasmalogen levels in full-term neonates. Acta Paediatr Oslo Nor 98:640–642. doi:10.1111/j.1651-2227.2008.01205.x

    Article  Google Scholar 

  55. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21:759–773

    Article  CAS  PubMed  Google Scholar 

  56. Schmid HH, Takahashi T (1970) Reductive and oxidative biosynthesis of plasmalogens in myelinating brain. J Lipid Res 11:412–419

    CAS  PubMed  Google Scholar 

  57. Balakrishnan S, Goodwin H, Cumings JN (1961) The distribution of phosphorus-containing lipid compounds in the human brain. J Neurochem 8:276–284

    Article  CAS  PubMed  Google Scholar 

  58. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452. doi:10.1016/j.bbadis.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  59. da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJ, Just WW, Kirschner DA, Sousa MM, Brites P (2014) Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 124:2560–2570. doi:10.1172/JCI72063

    Article  PubMed Central  PubMed  Google Scholar 

  60. Hossain MS, Ifuku M, Take S, Kawamura J, Miake K, Katafuchi T (2013) Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 8:e83508. doi:10.1371/journal.pone.0083508

    Article  PubMed Central  PubMed  Google Scholar 

  61. Yamazaki Y, Kondo K, Maeba R, Nishimukai M, Nezu T, Hara H (2014) Proportion of nervonic acid in serum lipids is associated with serum plasmalogen levels and metabolic syndrome. J Oleo Sci 63:527–537

    Article  CAS  PubMed  Google Scholar 

  62. Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, Yao KJ, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA (2012) Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 198:347–352. doi:10.1016/j.psychres.2012.02.019

    Article  CAS  PubMed  Google Scholar 

  63. Oma S, Mawatari S, Saito K, Wakana C, Tsuboi Y, Yamada T, Fujino T (2012) Changes in phospholipid composition of erythrocyte membrane in alzheimer’s disease. Dement Geriatr Cogn Disord Extra 2:298–303. doi:10.1159/000341603

    Article  Google Scholar 

  64. Taha AY, Cheon Y, Ma K, Rapoport SI, Rao JS (2013) Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res 47:636–643. doi:10.1016/j.jpsychires.2013.01.016

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed thanks to technical support and animal care by Françoise Boissel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pédrono.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11745_2015_4068_MOESM1_ESM.pdf

Supplemental Fig. 1 FA concentration in tissues as a function of age. Lipids were extracted from tissues of rats according to the Folch method. After saponification, FA were methylated and analyzed by GC–MS. FA content was determined using 17:0 as internal standard. Results are expressed as mean ± SD. (PDF 9 kb)

11745_2015_4068_MOESM2_ESM.pdf

Supplemental Fig. 2 DMA/FAME pattern in brain and RBC as a function of age. The ratio between plasmalogen-derived dimethylacetals and fatty acid methyl esters was determined for brain and RBC according to chain length (18:0, 18:1n-9, and 18:1n-7). Results were calculated from mole % of total methylated derivatives and are expressed as mean ± SD. (PDF 10 kb)

11745_2015_4068_MOESM3_ESM.docx

Supplemental Table 1 FA composition of liver and heart. Lipids were extracted with the Folch method and saponified. FA were methylated in FAME and analyzed by GC–MS. Results are expressed in mole % of total FA as mean ± SD. Different letters indicate significant differences between ages at p < 0.05. (DOCX 947 kb)

11745_2015_4068_MOESM4_ESM.docx

Supplemental Table 2 FA composition of white and brown adipose tissues. Lipids were extracted with the Folch method and saponified. FA were methylated in FAME and analyzed by GC–MS. Results are expressed in mole % of total FA as mean ± SD. Different letters indicate significant differences between ages at p < 0.05. (DOCX 948 kb)

11745_2015_4068_MOESM5_ESM.docx

Supplemental Table 3 FA composition of brain and retina. Lipids were extracted with the Folch method and saponified. FA were methylated in FAME and analyzed by GC–MS. Results are expressed in mole % of total FA as mean ± SD. Different letters indicate significant differences between ages at p < 0.05. (DOCX 947 kb)

11745_2015_4068_MOESM6_ESM.docx

Supplemental Table 4 FA composition of kidney and lung. Lipids were extracted with the Folch method and saponified. FA were methylated in FAME and analyzed by GC–MS. Results are expressed in mole % of total FA as mean ± SD. Different letters indicate significant differences between ages at p < 0.05. (DOCX 947 kb)

11745_2015_4068_MOESM7_ESM.docx

Supplemental Table 5 FA composition of skeletal muscle and testis. Lipids were extracted with the Folch method and saponified. FA were methylated in FAME and analyzed by GC–MS. Results are expressed in mole % of total FA as mean ± SD. Different letters indicate significant differences between ages at p < 0.05. (DOCX 948 kb)

11745_2015_4068_MOESM8_ESM.docx

Supplemental Table 6 FA composition of plasma and red blood cells. Lipids were extracted with the Folch method and saponified. FA were methylated in FAME and analyzed by GC–MS. Results are expressed in mole % of total FA as mean ± SD. Different letters indicate significant differences between ages at p < 0.05. (DOCX 947 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pédrono, F., Boulier-Monthéan, N., Catheline, D. et al. Impact of a Standard Rodent Chow Diet on Tissue n-6 Fatty Acids, Δ9-Desaturation Index, and Plasmalogen Mass in Rats Fed for One Year. Lipids 50, 1069–1082 (2015). https://doi.org/10.1007/s11745-015-4068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4068-y

Keywords

Navigation