Skip to main content
Log in

Oral Absorption and Disposition of alpha-Linolenic, Rumenic and Vaccenic Acids After Administration as a Naturally Enriched Goat Dairy Fat to Rats

  • Original Article
  • Published:
Lipids

Abstract

Although there is extensive information describing the positive biological effects of conjugated linoleic acid and its main isomer rumenic acid (RA; C18:2 cis 9, trans 11), and alpha-linolenic acid (ALA) and vaccenic acid (TVA), data about their bioavailability are not available. In this work, we investigated the oral absorption and disposition of these fatty acids in Wistar rats. A naturally enriched goat dairy fat (EDF) was obtained by supplementing ruminant diets with oils or oilseeds rich in polyunsaturated fatty acids (PUFA). The EDF was administered orally (single dose of 3000 mg EDF/kg body weight equivalent to 153 mg TVA/kg body weight, 46 mg RA/kg body weight and 31 mg ALA/kg body weight), and serial blood and liver samples were collected and TVA, RA and ALA concentrations determined by GC/MS. The fatty acids TVA, RA and ALA were rapidly absorbed (t1/2a, 0.36, 0.66 and 0.76 h, respectively, for plasma) and slowly eliminated (t1/2β, 17.04, 18.40 and 16.52 h, respectively, for plasma). The maximum concentration (C max) was detected in liver > plasma > erythrocyte. Our study shows that when orally administered EDF, its components TVA, RA and ALA were rapidly absorbed and distributed throughout the body by the blood circulation to exert systemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALA:

alpha-Linolenic acid

CLA:

Conjugated linoleic acid

DHA:

Docosahexaenoic acid

EDF:

Naturally enriched dairy fat

FAME:

Fatty acid methyl esters

LDL:

Low density lipoproteins

LOD:

Limit of detection

LOQ:

Limit of quantification

MUFA:

Monounsaturated fatty acids

NOAEL:

Non-observable adverse effect level

PUFA:

Polyunsaturated fatty acids

RA:

Rumenic acid

SDF:

Standard dairy fat

SFA:

Saturated fatty acids

TFA:

trans-Fatty acids

TMR:

Total mixed ration

TVA:

trans-Vaccenic acid

References

  1. Haug AA, Hostmark T, Harstad OM (2007) Bovine milk in human nutrition—a review. Lipids Health Dis 25:6–25

    Google Scholar 

  2. Nishida C, Uauy R, Kumanyik S, Shetty P (2004) The Joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7:245–250

    PubMed  Google Scholar 

  3. Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr 22:505–531

    Article  CAS  PubMed  Google Scholar 

  4. Parodi PW (2004) Milk fat in human nutrition. Aust J Dairy Technol 59:3–59

    CAS  Google Scholar 

  5. Fontecha J, Rodríguez-Alcalá LM, Calvo MV, Juárez M (2011) Bioactive milk lipids. Curr Nutr Food Sci 7:155–159

    Article  CAS  Google Scholar 

  6. Rodríguez-Alcalá LM, Fontecha J, de la Hoz L, da Silva VSN, Carvalho JE, Pacheco MTB (2013) CLA-enriched milk powder reverses hypercholesterolemic risk factors in hamsters. Food Res Int 51:244–249

    Article  Google Scholar 

  7. Rodríguez-Alcalá LM, Villar-Tajadura A, Juárez M, Fontecha J (2013) Commercial conjugated linoleic acid (CLA) fortified dairy products. In: Preedy VR, Srirajaskanthan R, Patel VB (eds) Handbook of food fortification and health nutrition and health, vol 1. Springer, New York, pp 173–184

    Chapter  Google Scholar 

  8. Park Y (2009) Conjugated linoleic acid (CLA): good or bad trans fat? J Food Compost Anal 22:S4–S12

    Article  CAS  Google Scholar 

  9. Schmid A, Collomb M, Sieber R, Bee G (2006) Conjugated linoleic acid in meat and meat products: a review. Meat Sci 73:29–41

    Article  CAS  PubMed  Google Scholar 

  10. Fritsche J, Rickert R, Steinhart H, Yurawecz MP, Mossoba MM, Sehat N, Roach JAG, Kramer JKG, Ku Y (1999) Conjugated linoleic acid (CLA) isomers: formation, analysis, amounts in foods, and dietary intake. Fett-Lipid 101:272–276

    Article  CAS  Google Scholar 

  11. Collomb M, Schmid A, Sieber R, Wechsler D, Ryhanen EL (2006) Conjugated linoleic acids in milk fat: variation and physiological effects. Int Dairy J 16:1347–1361

    Article  CAS  Google Scholar 

  12. Jenkins TC, McGuire MA (2006) Major advances in nutrition: impact on milk composition. J Dairy Sci 89:1302–1310

    Article  CAS  PubMed  Google Scholar 

  13. Palmquist DL, Lock AL, Shingfield KJ, Bauman DE (2005) Biosynthesis of conjugated linoleic acid in ruminants and humans. In: Steve LT (ed) Advances in food and nutrition research, vol 50. Academic, New York, pp 179–217

    Chapter  Google Scholar 

  14. Mosley EE, McGuire MK, Williams JE, McGuire MA (2006) Cis-9, trans-11 conjugated linoleic acid is synthesized from vaccenic acid in lactating women. J Nutr 136:2297–2301

    CAS  PubMed  Google Scholar 

  15. Harris WS (2008) The omega-3 index as a risk factor for coronary heart disease. Am J Clin Nutr 87:1997S–2002S

    CAS  PubMed  Google Scholar 

  16. Pintus S, Murru E, Cordeddu L, Batetta B, Accossu S, Pistis D, Uda S, Ghiani ME, Mele M, Secchiari P, Almerighi G, Pintus P, Banni S (2013) Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br J Nutr 109:1453–1462

    Article  CAS  PubMed  Google Scholar 

  17. Banni S, Carta G, Murru E, Cordeddu L, Giordano E, Sirigu A, Berge K, Vik H, Maki K, Di Marzo V, Griinari M (2011) Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects. Nutr Metab 8:7

    Article  CAS  Google Scholar 

  18. Sofi F, Buccioni A, Cesari F, Gori AM, Minieri S, Mannini L, Casini A, Gensini GF, Abbate R, Antongiovanni M (2010) Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutr Metab Cardiovas 20:117–124

    Article  CAS  Google Scholar 

  19. Jacome-Sosa MM, Lu J, Wang Y, Ruth M, Wright D, Reaney M, Shen J, Field C, Vine D, Proctor S (2010) Increased hypolipidemic benefits of cis-9, trans-11 conjugated linoleic acid in combination with trans-11 vaccenic acid in a rodent model of the metabolic syndrome, the JCR: LA-cp rat. Nutr Metab 7:60

    Article  Google Scholar 

  20. Anadón A, Martínez-Larrañaga MR, Martínez MA, Ares I, Ramos E, Gómez-Cortés P, Juárez M, De la Fuente MA (2011) A 4-week repeated oral dose toxicity study of dairy fat naturally enriched in vaccenic, rumenic and α-linolenic acids in rats. J Agric Food Chem 59:8036–8046

    Article  PubMed  Google Scholar 

  21. Ip C, Briggs SP, Haegele AD, Thompson HJ, Storkson J, Scimeca JA (1996) The efficacy of conjugated linoleic acid in mammary cancer prevention is independent of the level or type of fat in the diet. Carcinogenesis 17:1045–1050

    Article  CAS  PubMed  Google Scholar 

  22. Gomez-Cortes P, Bach A, Luna P, Juarez M, De la Fuente MA (2009) Effects of extruded linseed supplementation on n-3 fatty acids and conjugated linoleic acid in milk and cheese from ewes. J Dairy Sci 92:4122–4134

    Article  CAS  PubMed  Google Scholar 

  23. Luna P, Juarez M, De la Fuente MA (2005) Validation of a rapid milk fat separation method to determine the fatty acid profile by gas chromatography. J Dairy Sci 88:3377–3381

    Article  CAS  PubMed  Google Scholar 

  24. Castro-Gomez P, Fontecha J, Rodríguez-Alcala LM (2014) A high performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples. Talanta 128:518–523

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Alcalá LM, Fontecha J (2007) Hot topic: fatty acid and conjugated linoleic acid (CLA) isomer composition of commercial CLA-fortified dairy products: evaluation after processing and storage. J Dairy Sci 90:2083–2090

    Article  PubMed  Google Scholar 

  26. Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 6:165–175

    Article  CAS  PubMed  Google Scholar 

  27. Wagner JG (1975) Fundamentals of clinical pharmacokinetics. Drug Intelligence, Hamilton

    Google Scholar 

  28. Wagner JG (1975) Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of poly-exponential equations which have been titled to the data. J Pharmacokinet Biopharm 4:443–467

    Article  Google Scholar 

  29. Field CJ, Blewett HH, Proctor S, Vine D (2009) Human health benefits of vaccenic acid. Appl Physiol Nutr Metab 34:979–991

    Article  CAS  PubMed  Google Scholar 

  30. Lock AL, Bauman DE (2004) Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39:1197–1206

    Article  CAS  PubMed  Google Scholar 

  31. Lock AL, Horne CAM, Bauman DE, Salter AM (2005) Butter naturally enriched in conjugated linoleic acid and vaccenic acid alters tissue fatty acids and improves the plasma lipoprotein profile in cholesterol-fed hamsters. J Nutr 135:1934–1939

    CAS  PubMed  Google Scholar 

  32. Lin X, Bo J, Oliver SAM, Corl BA, Jacobi SK, Oliver WT, Harrell RJ, Odle J (2011) Dietary conjugated linoleic acid alters long chain polyunsaturated fatty acid metabolism in brain and liver of neonatal pigs. J Nutr Biochem 22:1047–1054

    Article  CAS  PubMed  Google Scholar 

  33. Corl BA, Oliver SAM, Lin X, Oliver WT, Ma Y, Harrell RJ, Odle J (2008) Conjugated linoleic acid reduces body fat accretion and lipogenic gene expression in neonatal pigs fed low- or high-fat formulas. J Nutr 138:449–454

    CAS  PubMed  Google Scholar 

  34. Martins SV, Lopes PA, Alves SP, Alfaia CM, Castro MF, Bessa RJB, Prates JAM (2012) Dietary CLA combined with palm oil or ovine fat differentially influences fatty acid deposition in tissues of obese Zucker rats. Lipids 47:47–58

    Article  CAS  PubMed  Google Scholar 

  35. Michalski MC, Soares AF, Lopez C, Leconte N, Briard V, Geloen A (2006) The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. Eur J Nutr 45:215–224

    Article  CAS  PubMed  Google Scholar 

  36. Du Q, Martin JC, Agnani G, Pages N, Leruyet P, Carayon P, Delplanque B (2012) Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. J Nutr Biochem 23:1573–1582

    Article  CAS  PubMed  Google Scholar 

  37. Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Projects (ALIBIRD-CM Program) Ref. S2013/ABI-2728 from Comunidad de Madrid, Ref. AGL-2011-26713 from Ministerio de Economía y Competitividad and Ref. UCM-BSCH/GR3/14 from Universidad Complutense de Madrid, Spain.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Anadón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Alcalá, L.M., Ares, I., Fontecha, J. et al. Oral Absorption and Disposition of alpha-Linolenic, Rumenic and Vaccenic Acids After Administration as a Naturally Enriched Goat Dairy Fat to Rats. Lipids 50, 659–666 (2015). https://doi.org/10.1007/s11745-015-4034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4034-8

Keywords

Navigation