, Volume 50, Issue 5, pp 437–446 | Cite as

The Effects of Omega-3 Polyunsaturated Fatty Acid Consumption on Mammary Carcinogenesis

  • Theodore R. Witte
  • W. Elaine HardmanEmail author


The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) is associated with a reduced risk of breast cancer. Studies in animals and in vitro have demonstrated mechanisms that could explain this apparent effect, but clinical and epidemiological studies have returned conflicting results on the practical benefits of dietary n-3 PUFA for prevention of breast cancer. Effects are often only significant within a population when comparing the highest n-3 PUFA consumption group to the lowest n-3 group or highest n-6 group. The beneficial effects of n-3 PUFA eicosapentaenoic and docosahexaenoic on the risk of breast cancer are dose dependent and are negatively affected by total n-6 consumption. The majority of the world population, including the most highly developed regions, consumes insufficient n-3 PUFA to significantly reduce breast cancer risk. This review discusses the physiological and dietary context in which reduction of breast cancer risk may occur, some proposed mechanisms of action and meaningful recommendations for consumption of n-3 PUFA in the diet of developed regions.


α-Linolenic acid Arachidonic acid Breast cancer Cyclooxygenase-2 Docosahexaenoic acid Eicosapentaenoic acid Linoleic acid Nuclear factor kappa beta Omega-3 Omega-6 Polyunsaturated fatty acids Prostaglandin E2 



α-Linolenic acid


Age standardized rate


Arachidonic acid


Breast cancer early onset




Cytochrome P450 1B1


Docosahexaenoic acid


Ductal carcinoma in situ


Eicosapentaenoic acid


Epidermal growth factor receptor


Linoleic acid


Long chain polyunsaturated fatty acid


Mammalian target of rapamycin


Mitogen activated protein kinase


Nuclear factor kappa beta

n-3 or n-6 PUFA

Omega-3 or omega-6 polyunsaturated fatty acids


Peroxisome proliferator-activated receptor


Prostaglandin E2


Prostaglandin E3


Reactive oxygen species


Soluble intercellular adhesion molecule-1


Vascular endothelial growth factor


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2014) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefPubMedGoogle Scholar
  2. 2.
    Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis, Chen HS, Feuer EJ, Cronin KA (2014) SEER cancer statistics review, 1975–2011. National Cancer Institute, Bethesda (12 Mar 2014)Google Scholar
  3. 3.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  4. 4.
    Levy-Lahad E, Catane R, Eisenberg S, Kaufman B, Hornreich G, Lishinsky E, Shohat M, Weber BL, Beller U, Lahad A, Halle D (1997) Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families. Am J Hum Genet 60:1059–1067PubMedCentralPubMedGoogle Scholar
  5. 5.
    Jonker MA, Jacobi CE, Hoogendoorn WE, Nagelkerke NJ, de Bock GH, van Houwelingen JC (2003) Modeling familial clustered breast cancer using published data. Cancer Epidemiol Biomarkers Prev 12:1479–1485PubMedGoogle Scholar
  6. 6.
    Ghadirian P, Narod S, Fafard E, Costa M, Robidoux A, Nkondjock A (2009) Breast cancer risk in relation to the joint effect of BRCA mutations and diet diversity. Breast Cancer Res Treat 117:417–422CrossRefPubMedGoogle Scholar
  7. 7.
    Ko KP, Kim SW, Ma SH, Park B, Ahn Y, Lee JW, Lee MH, Kang E, Kim LS, Jung Y, Cho YU, Lee B, Lin JH, Park SK (2013) Dietary intake and breast cancer among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study. Am J Clin Nutr 98:1493–1501CrossRefPubMedGoogle Scholar
  8. 8.
    Ziegler RG, Hoover RN, Pike MC, Hildesheim A, Nomura AM, West DW, Wu-Williams AH, Kolonel LN, Horn-Ross PL, Rosenthal JF, Hyer MB (1993) Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85:1819–1827CrossRefPubMedGoogle Scholar
  9. 9.
    Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13:790–801CrossRefPubMedGoogle Scholar
  10. 10.
    Wolmarans P (2009) Background paper on global trends in food production, intake and composition. Ann Nutr Metab 55:244–272CrossRefPubMedGoogle Scholar
  11. 11.
    World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of Cancer: a global perspective. AICR, WashingtonGoogle Scholar
  12. 12.
    US Department of Agriculture, ARS (2014) USDA National nutrient database for standard reference, Release 27. Nutrient Data Laboratory Home Page (12 Mar 2014)Google Scholar
  13. 13.
    USDA, 2.WAOBW(2014) World agricultural supply and demand estimates report (WASDE). (12 Mar 2014)Google Scholar
  14. 14.
    Harris WS, Baack ML (2014) Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol 35:1–7CrossRefPubMedGoogle Scholar
  15. 15.
    Guesnet P, Lallemand SM, Alessandri JM, Jouin M, Cunnane SC (2011) alpha-Linolenate reduces the dietary requirement for linoleate in the growing rat. Prostaglandins Leukot Essent Fatty Acids 85:353–360CrossRefPubMedGoogle Scholar
  16. 16.
    Wei N, Mi MT, Wang B, Zhu JD, Zhu DP, Yuan JL (2007) Effects of different dietary fatty acid on expression of nuclear receptor genes in breast cancer of rats. Zhonghua Yu Fang Yi Xue Za Zhi 41:271–276PubMedGoogle Scholar
  17. 17.
    Gerster H (1998) Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res 68:159–173PubMedGoogle Scholar
  18. 18.
    Welch AA, Shakya-Shrestha S, Lentjes MA, Wareham NJ, Khaw KT (2010) Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of alpha-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr 92:1040–1051CrossRefPubMedGoogle Scholar
  19. 19.
    Lohner S, Fekete K, Marosvolgyi T, Decsi T (2013) Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab 62:98–112CrossRefPubMedGoogle Scholar
  20. 20.
    Pender-Cudlip MC, Krag KJ, Martini D, Yu J, Guidi A, Skinner SS, Zhang Y, Qu X, He C, Xu Y, Qian SY, Kang JX (2013) Delta-6-desaturase activity and arachidonic acid synthesis are increased in human breast cancer tissue. Cancer Sci 104:760–764CrossRefPubMedGoogle Scholar
  21. 21.
    Grammatikos SI, Subbaiah PV, Victor TA, Miller WM (1994) n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines. Br J Cancer 70:219–227CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC (2009) alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80:85–91CrossRefPubMedGoogle Scholar
  23. 23.
    Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC (2013) Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 88:139–146CrossRefPubMedGoogle Scholar
  24. 24.
    Arterburn LM, Hall EB, Oken H (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83:1467S–1476SPubMedGoogle Scholar
  25. 25.
    Thiebaut AC, Chajes V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G, Berrino F, Riboli E, Benichou J, Clavel-Chapelon F (2009) Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 124:924–931CrossRefPubMedGoogle Scholar
  26. 26.
    Zou Z, Bellenger S, Massey KA, Nicolaou A, Geissler A, Bidu C, Bonnotte B, Pierre AS, Minville-Walz M, Rialland M, Seubert J, Kang JX, Lagrost L, Narce M, Bellenger J (2013) Inhibition of the HER2 pathway by n-3 polyunsaturated fatty acids prevents breast cancer in fat-1 transgenic mice. J Lipid Res 54:3453–3463CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Maillard V, Bougnoux P, Ferrari P, Jourdan ML, Pinault M, Lavillonniere F, Body G, Le FO, Chajes V (2002) N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int J Cancer 98:78–83CrossRefPubMedGoogle Scholar
  28. 28.
    Chajes V, Thiebaut AC, Rotival M, Gauthier E, Maillard V, Boutron-Ruault MC, Joulin V, Lenoir GM, Clavel-Chapelon F (2008) Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 167:1312–1320CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Sala-Vila A, Calder PC (2011) Update on the relationship of fish intake with prostate, breast, and colorectal cancers. Crit Rev Food Sci Nutr 51:855–871CrossRefPubMedGoogle Scholar
  30. 30.
    Weaver KL, Ivester P, Chilton JA, Wilson MD, Pandey P, Chilton FH (2008) The content of favorable and unfavorable polyunsaturated fatty acids found in commonly eaten fish. J Am Diet Assoc 108:1178–1185CrossRefPubMedGoogle Scholar
  31. 31.
    Gladyshev MI, Sushchik NN, Makhutova ON (2013) Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat 107:117–126. doi: 10.1016/j.prostaglandins.2013.03.002 (epub 14 Mar 2013)CrossRefPubMedGoogle Scholar
  32. 32.
    Micha R, Khatibzadeh S, Shi P, Fahimi S, Lim S, Andrews KG, Engell RE, Powles J, Ezzati M, Mozaffarian D (2014) Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348:g2272. doi: 10.1136/bmj.g2272 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Gago-Dominguez M, Yuan JM, Sun CL, Lee HP, Yu MC (2003) Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: the Singapore Chinese Health Study. Br J Cancer 89:1686–1692CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Murff HJ, Shu XO, Li H, Yang G, Wu X, Cai H, Wen W, Gao YT, Zheng W (2011) Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study. Int J Cancer 128:1434–1441CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Kim J, Lim SY, Shin A, Sung MK, Ro J, Kang HS, Lee KS, Kim SW, Lee ES (2009) Fatty fish and fish omega-3 fatty acid intakes decrease the breast cancer risk: a case-control study. BMC Cancer 9:216. doi: 10.1186/1471-2407-9-216 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Zheng JS, Hu XJ, Zhao YM, Yang J, Li D (2013) Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 346:f3706. doi: 10.1136/bmj.f3706 CrossRefPubMedGoogle Scholar
  37. 37.
    Yang B, Ren XL, Fu YQ, Gao JL, Li D (2014) Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer 14:105. doi: 10.1186/1471-2407-14-105 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Anderson BM, MacLennan MB, Hillyer LM, Ma DW (2014) Lifelong exposure to n-3 PUFA affects pubertal mammary gland development. Appl Physiol Nutr Metab 39:699–706CrossRefPubMedGoogle Scholar
  39. 39.
    Manna S, Janarthan M, Ghosh B, Rana B, Rana A, Chatterjee M (2010) Fish oil regulates cell proliferation, protect DNA damages and decrease HER-2/neu and c-Myc protein expression in rat mammary carcinogenesis. Clin. Nutr. 29:531–537CrossRefPubMedGoogle Scholar
  40. 40.
    Erickson KL, Hubbard NE (2010) Fatty acids and breast cancer: the role of stem cells. Prostaglandins Leukot Essent Fatty Acids 82:237–241CrossRefPubMedGoogle Scholar
  41. 41.
    Wei N, Wang B, Zhang QY, Mi MT, Zhu JD, Yu XP, Yuan JL, Chen K, Wang J, Chang H (2008) Effects of different dietary fatty acids on the fatty acid compositions and the expression of lipid metabolic-related genes in mammary tumor tissues of rats. Nutr Cancer 60:810–825CrossRefPubMedGoogle Scholar
  42. 42.
    Chen Z, Zhang Y, Jia C, Wang Y, Lai P, Zhou X, Wang Y, Song Q, Lin J, Ren Z, Gao Q, Zhao Z, Zheng H, Wan Z, Gao T, Zhao A, Dai Y, Bai X (2014) mTORC1/2 targeted by n-3 polyunsaturated fatty acids in the prevention of mammary tumorigenesis and tumor progression. Oncogene 33:4548–4557CrossRefPubMedGoogle Scholar
  43. 43.
    Innis SM (2011) Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr 7(Suppl 2):112–123. doi: 10.1111/j.1740-8709.2011.00318.x CrossRefPubMedGoogle Scholar
  44. 44.
    Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST (2003) Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100:1751–1756CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Nicol CJ, Yoon M, Ward JM, Yamashita M, Fukamachi K, Peters JM, Gonzalez FJ (2004) PPARgamma influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 25:1747–1755CrossRefPubMedGoogle Scholar
  46. 46.
    Wojcik C, Lohe K, Kuang C, Xiao Y, Jouni Z, Poels E (2014) Modulation of adipocyte differentiation by omega-3 polyunsaturated fatty acids involves the ubiquitin-proteasome system. J Cell Mol Med 18:590–599CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Eser PO, Vanden Heuvel JP, Araujo J, Thompson JT (2013) Marine- and plant-derived omega-3 fatty acids differentially regulate prostate cancer cell proliferation. Mol Clin. Oncol 1:444–452PubMedCentralPubMedGoogle Scholar
  48. 48.
    Aberg UW, Saarinen N, Abrahamsson A, Nurmi T, Engblom S, Dabrosin C (2011) Tamoxifen and flaxseed alter angiogenesis regulators in normal human breast tissue in vivo. PLoS One 6:e25720CrossRefPubMedGoogle Scholar
  49. 49.
    Perrone G, Santini D, Vincenzi B, Zagami M, La CA, Bianchi A, Altomare V, Primavera A, Battista C, Vetrani A, Tonini G, Rabitti C (2005) COX-2 expression in DCIS: correlation with VEGF, HER-2/neu, prognostic molecular markers and clinicopathological features. Histopathology 46:561–568CrossRefPubMedGoogle Scholar
  50. 50.
    Touvier M, Kesse-Guyot E, Andreeva VA, Fezeu L, Charnaux N, Sutton A, Druesne-Pecollo N, Hercberg S, Galan P, Zelek L, Latino-Martel P, Czernichow S (2012) Modulation of the association between plasma intercellular adhesion molecule-1 and cancer risk by n-3 PUFA intake: a nested case-control study. Am J Clin Nutr 95:944–950CrossRefPubMedGoogle Scholar
  51. 51.
    Hardman WE, Munoz J Jr, Cameron IL (2002) Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice. Cancer Cell Int 2:10CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Begin ME, Ells G, Horrobin DF (1988) Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst 80:188–194CrossRefPubMedGoogle Scholar
  53. 53.
    Erbas B, Provenzano E, Armes J, Gertig D (2006) The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat 97:135–144CrossRefPubMedGoogle Scholar
  54. 54.
    De CF, Witte TR, Hardman WE, Claudio PP (2013) Omega-3 eicosapentaenoic acid decreases CD133 colon cancer stem-like cell marker expression while increasing sensitivity to chemotherapy. PLoS One 8:e69760CrossRefGoogle Scholar
  55. 55.
    Yamagami T, Porada CD, Pardini RS, Zanjani ED, Almeida-Porada G (2009) Docosahexaenoic acid induces dose dependent cell death in an early undifferentiated subtype of acute myeloid leukemia cell line. Cancer Biol Ther 8:331–337CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Ion G, Akinsete JA, Hardman WE (2010) Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer 10:81. doi: 10.1186/1471-2407-10-81 CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Olivo SE, Hilakivi-Clarke L (2005) Opposing effects of prepubertal low- and high-fat n-3 polyunsaturated fatty acid diets on rat mammary tumorigenesis. Carcinogenesis 26:1563–1572CrossRefPubMedGoogle Scholar
  58. 58.
    Stoll BA (1999) Western nutrition and the insulin resistance syndrome: a link to breast cancer. Eur J Clin Nutr 53:83–87CrossRefPubMedGoogle Scholar
  59. 59.
    Holman RT, Johnson SB, Ogburn PL (1991) Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl Acad Sci USA 88:4835–4839CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Kang JX (2007) Fat-1 transgenic mice: a new model for omega-3 research. Prostaglandins Leukot Essent Fatty Acids 77:263–267CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Zhu Z, Jiang W, Thompson HJ (1999) Effect of energy restriction on tissue size regulation during chemically induced mammary carcinogenesis. Carcinogenesis 20:1721–1726CrossRefPubMedGoogle Scholar
  62. 62.
    Harris RE, Casto BC, Harris ZM (2014) Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol 5:677–692CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400CrossRefPubMedGoogle Scholar
  64. 64.
    Miglietta A, Toselli M, Ravarino N, Vencia W, Chiecchio A, Bozzo F, Motta M, Torchio B, Bocca C (2010) COX-2 expression in human breast carcinomas: correlation with clinicopathological features and prognostic molecular markers. Expert Opin Ther Targets 14:655–664CrossRefPubMedGoogle Scholar
  65. 65.
    Hardman WE (2002) Omega-3 fatty acids to augment cancer therapy. J Nutr 132:3508S–3512SPubMedGoogle Scholar
  66. 66.
    Horia E, Watkins BA (2005) Comparison of stearidonic acid and alpha-linolenic acid on PGE2 production and COX-2 protein levels in MDA-MB-231 breast cancer cell cultures. J Nutr Biochem 16:184–192CrossRefPubMedGoogle Scholar
  67. 67.
    Ristimaki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, Joensuu H, Isola J (2002) Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635PubMedGoogle Scholar
  68. 68.
    Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A (2009) The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 45:2077–2086CrossRefPubMedGoogle Scholar
  69. 69.
    Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661CrossRefPubMedGoogle Scholar
  70. 70.
    Horia E, Watkins BA (2007) Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells. Carcinogenesis 28:809–815CrossRefPubMedGoogle Scholar
  71. 71.
    Yee LD, Agarwal D, Rosol TJ, Lehman A, Tian M, Hatton J, Heestand J, Belury MA, Clinton SK (2013) The inhibition of early stages of HER-2/neu-mediated mammary carcinogenesis by dietary n-3 PUFAs. Mol Nutr Food Res 57:320–327CrossRefPubMedGoogle Scholar
  72. 72.
    Chajes V, Torres-Mejia G, Biessy C, Ortega-Olvera C, Angeles-Llerenas A, Ferrari P, Lazcano-Ponce E, Romieu I (2012) omega-3 and omega-6 Polyunsaturated fatty acid intakes and the risk of breast cancer in Mexican women: impact of obesity status. Cancer Epidemiol Biomarkers Prev 21:319–326CrossRefPubMedGoogle Scholar
  73. 73.
    Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2:356–365CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Han EH, Kim HG, Hwang YP, Song GY, Jeong HG (2010) Prostaglandin E2 induces CYP1B1 expression via ligand-independent activation of the ERalpha pathway in human breast cancer cells. Toxicol Sci 114:204–216CrossRefPubMedGoogle Scholar
  75. 75.
    Paquette B, Bisson M, Baptiste C, Therriault H, Lemay R, Cantin AM (2005) Invasiveness of breast cancer cells MDA-MB-231 through extracellular matrix is increased by the estradiol metabolite 4-hydroxyestradiol. Int J Cancer 113:706–711CrossRefPubMedGoogle Scholar
  76. 76.
    Park SA, Na HK, Kim EH, Cha YN, Surh YJ (2009) 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of IkappaB kinase: potential role of reactive oxygen species. Cancer Res 69:2416–2424CrossRefPubMedGoogle Scholar
  77. 77.
    Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D (2013) Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 8:e54206CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Ghosh-Choudhury T, Mandal CC, Woodruff K, St CP, Fernandes G, Choudhury GG, Ghosh-Choudhury N (2009) Fish oil targets PTEN to regulate NFkappaB for downregulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res Treat 118:213–228CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Manni A, Richie JP Jr, Xu H, Washington S, Aliaga C, Cooper TK, Bruggeman R, Das A, Prokopczyk B, Calcagnotto A, Trushin N, Dickinson R, Liao J, Verderame MF, El-Bayoumy K (2011) Effects of fish oil and Tamoxifen on preneoplastic lesion development and biomarkers of oxidative stress in the early stages of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Int J Oncol 39:1153–1164PubMedGoogle Scholar
  80. 80.
    Manni A, Xu H, Washington S, Aliaga C, Das A, Cooper T, Richie JP Jr, Prokopczyk B, Calcagnotto A, Trushin N, Van den Heuvel JP, Hamilton C, Demers LM, Liao J, Verderame MF, El-Bayoumy K (2011) The effects of Tamoxifen and fish oil on mammary carcinogenesis in polyoma middle T transgenic mice. Horm Cancer 2:249–259CrossRefPubMedGoogle Scholar
  81. 81.
    Sun X, Nair J, Linseisen J, Owen RW, Bartsch H (2012) Lipid peroxidation and DNA adduct formation in lymphocytes of premenopausal women: role of estrogen metabolites and fatty acid intake. Int J Cancer 131:1983–1990CrossRefPubMedGoogle Scholar
  82. 82.
    Vinothini G, Nagini S (2010) Correlation of xenobiotic-metabolizing enzymes, oxidative stress and NFkappaB signaling with histological grade and menopausal status in patients with adenocarcinoma of the breast. Clin Chim Acta 411:368–374CrossRefPubMedGoogle Scholar
  83. 83.
    Manna S, Das S, Chatterjee M, Janarthan M, Chatterjee M (2011) Combined supplementation of vanadium and fish oil suppresses tumor growth, cell proliferation and induces apoptosis in DMBA-induced rat mammary carcinogenesis. J Cell Biochem 112:2327–2339CrossRefPubMedGoogle Scholar
  84. 84.
    Manna S, Chakraborty T, Ghosh B, Chatterjee M, Panda A, Srivastava S, Rana A, Chatterjee M (2008) Dietary fish oil associated with increased apoptosis and modulated expression of Bax and Bcl-2 during 7,12-dimethylbenz(alpha)anthracene-induced mammary carcinogenesis in rats. Prostaglandins Leukot Essent Fatty Acids 79:5–14CrossRefPubMedGoogle Scholar
  85. 85.
    Wen ZH, Su YC, Lai PL, Zhang Y, Xu YF, Zhao A, Yao GY, Jia CH, Lin J, Xu S, Wang L, Wang XK, Liu AL, Jiang Y, Dai YF, Bai XC (2013) Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis. Oncogene 32:160–170CrossRefPubMedGoogle Scholar
  86. 86.
    Glover JA, Hughes CM, Cantwell MM, Murray LJ (2011) A systematic review to establish the frequency of cyclooxygenase-2 expression in normal breast epithelium, ductal carcinoma in situ, microinvasive carcinoma of the breast and invasive breast cancer. Br J Cancer 105:13–17CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A, Berra B, Rizzo AM (2011) Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis 10:73. doi: 10.1186/1476-511X-10-73 CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT (2010) Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One 5:e10296CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    Sun H, Berquin IM, Owens RT, O’Flaherty JT, Edwards IJ (2008) Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Res 68:2912–2919CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233:674–688CrossRefGoogle Scholar
  91. 91.
    Yee LD, Lester JL, Cole RM, Richardson JR, Hsu JC, Li Y, Lehman A, Belury MA, Clinton SK (2010) Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition. Am J Clin Nutr 91:1185–1194CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Bagga D, Capone S, Wang HJ, Heber D, Lill M, Chap L, Glaspy JA (1997) Dietary modulation of omega-3/omega-6 polyunsaturated fatty acid ratios in patients with breast cancer. J Natl Cancer Inst 89:1123–1131CrossRefPubMedGoogle Scholar
  93. 93.
    Maki KC, Yurko-Mauro K, Dicklin MR, Schild AL, Geohas JG (2014) A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia. Prostaglandins Leukot Essent Fatty Acids 91:141–148CrossRefPubMedGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and MicrobiologyMarshall University School of MedicineHuntingtonUSA

Personalised recommendations