Skip to main content
Log in

Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions

  • Review
  • Published:
Lipids

Abstract

Ordered membrane lipid domains rich in sphingolipids and sterols (“lipid rafts”) are thought to be important in many biological processes.  However, it is often difficult to distinguish domain-dependent biological functions from ones that have a specific dependence on sterol, e.g. are dependent upon a protein with a function that is dependent upon its binding to sterol.  Removing cholesterol and replacing it with various sterols with varying abilities to form membrane domains or otherwise alter membrane properties has the potential to help distinguish these cases.  This review describes this strategy, and how it has been applied by various investigators to understand cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-HT1A:

5-Hydroxytryptamine (serotonin) receptor 1A

7KC:

7-Ketocholesterol

8-OH-DPAT:

8-Hydroxy-2(di-N-propylamino)tetralin

APP:

Amyloid precursor protein

BSA:

Bovine serum albumin

CCKR:

Cholecystokinin receptor

CD39:

Ecto-nucleoside triphosphate diphosphohydrolase-1

CHO:

Chinese hamster ovary

ΔchoD:

Knock-out of cholesterol oxidase gene

CR3:

Complement receptor 3

DPH:

Diphenylhexatriene

DRM:

Detergent resistant membranes

EGFR:

Epidermal growth factor receptor

ent-cholesterol:

Cholesterol-enantiomer

ER:

Endoplasmic reticulum

ETA:

Endothelin receptor type A

FRET:

Fluorescence resonance energy transfer

GABA:

Gamma-aminobutyric acid

GalR2:

Galanin receptor 2

GM1:

Monosialotetrahexosylganglioside

HIV-1:

Human immunodeficiency virus type 1

HPβCD:

Hydroxypropyl-β-cyclodextrin

IK1:

Intermediate-conductance Ca2+-activated K channels

Ld:

Liquid disordered

Lo:

Liquid ordered

maxi-K:

Large-conductance Ca2+-activated K channels

MβCD:

Methyl-β-cyclodextrin

Mtb:

Mycobacterium tuberculosis

NO:

Nitric oxide

OTR:

Oxytocin receptor

PC:

Phosphatidylcholine

PFO:

Perfringolysin O

ROS:

Reactive oxygen species

SCAP:

SREBP cleavage-activating protein

SFV:

Semliki Forest virus

SMase:

Sphingomyelinase

SREBP:

Sterol regulatory element binding protein

TCR:

T cell receptor

TMADPH:

Trimethylammonium diphenylhexatriene

TLR2:

Toll-like receptor 2

TRPV1:

Transient receptor potential vanilloid 1

VRAC:

Volume-regulated anion current

References

  1. Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164(2):103–114

    Article  CAS  PubMed  Google Scholar 

  2. Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91(25):12130–12134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36(36):10944–10953

    Article  CAS  PubMed  Google Scholar 

  5. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  6. Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838(2):532–545

    Article  CAS  PubMed  Google Scholar 

  7. Lafont F et al (2002) Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44–IpaB interaction. EMBO J 21(17):4449–4457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Baorto DM et al (1997) Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389(6651):636–639

    Article  CAS  PubMed  Google Scholar 

  9. Duncan MJ et al (2004) Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem 279(18):18944–18951

    Article  CAS  PubMed  Google Scholar 

  10. Konkel ME et al (1992) Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microb Pathog 13(5):357–370

    Article  CAS  PubMed  Google Scholar 

  11. Seveau S et al (2004) Role of lipid rafts in E-cadherin—and HGF-R/Met—mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166(5):743–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697

    Article  PubMed Central  PubMed  Google Scholar 

  13. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21:430–439

    Article  CAS  Google Scholar 

  14. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  CAS  PubMed  Google Scholar 

  15. Campbell SM, Crowe SM, Mak J (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22(3):217–227

    Article  CAS  PubMed  Google Scholar 

  16. LaRocca TJ et al (2010) Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. Cell Host Microbe 8(4):331–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. LaRocca TJ et al (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9(5):e1003353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Toulmay A, Prinz WA (2013) Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J Cell Biol 202(1):35–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gaus K, Zech T, Harder T (2006) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23(1):41–48

    Article  CAS  PubMed  Google Scholar 

  20. Petruzielo RS et al (2013) Phase behavior and domain size in sphingomyelin-containing lipid bilayers. Biochim Biophys Acta 1828(4):1302–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pathak P, London E (2011) Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Biophys J 101(10):2417–2425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68(3):533–544

    Article  CAS  PubMed  Google Scholar 

  23. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224

    Article  CAS  PubMed  Google Scholar 

  24. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83(5):2693–2701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. London E, Brown DA (2000) Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508(1–2):182–195

    Article  CAS  PubMed  Google Scholar 

  26. London E (2005) How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta 1746(3):203–220

    Article  CAS  PubMed  Google Scholar 

  27. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768(6):1311–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39(5):843–849

    Article  CAS  PubMed  Google Scholar 

  29. Holz RW (1974) The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann NY Acad Sci 235:469–479

    Article  CAS  PubMed  Google Scholar 

  30. Dahl JS, Dahl CE, Bloch K (1980) Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry 19(7):1467–1472

    Article  CAS  PubMed  Google Scholar 

  31. Dahl CE, Dahl JS, Bloch K (1980) Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum. Biochemistry 19(7):1462–1467

    Article  CAS  PubMed  Google Scholar 

  32. Dahl JS, Dahl CE, Bloch K (1981) Effect of cholesterol on macromolecular synthesis and fatty acid uptake by Mycoplasma capricolum. J Biol Chem 256(1):87–91

    CAS  PubMed  Google Scholar 

  33. Dahl JS, Dahl CE, Bloch K (1982) Role of membrane sterols in Mycoplasma capricolum. Rev Infect Dis 4(Suppl):S93–S96

    Article  PubMed  Google Scholar 

  34. Odriozola JM et al (1978) Sterol requirement of Mycoplasma capricolum. Proc Natl Acad Sci USA 75(9):4107–4109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Levitan I, Singh DK, Rosenhouse-Dantsker A (2014) Cholesterol binding to ion channels. Front Physiol 5:65

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kilsdonk EP et al (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270(29):17250–17256

    Article  CAS  PubMed  Google Scholar 

  37. Yancey PG et al (1996) Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J Biol Chem 271(27):16026–16034

    Article  CAS  PubMed  Google Scholar 

  38. Atger VM et al (1997) Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J Clin Invest 99(4):773–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang J, Megha, London E (2004) Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry 43(4):1010–1018

    Article  CAS  PubMed  Google Scholar 

  40. Xu X et al (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276(36):33540–33546

    Article  CAS  PubMed  Google Scholar 

  41. Wenz JJ, Barrantes FJ (2003) Steroid structural requirements for stabilizing or disrupting lipid domains. Biochemistry 42(48):14267–14276

    Article  CAS  PubMed  Google Scholar 

  42. Beattie ME et al (2005) Sterol structure determines miscibility versus melting transitions in lipid vesicles. Biophys J 89(3):1760–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Westover EJ, Covey DF (2004) The enantiomer of cholesterol. J Membr Biol 202(2):61–72

    Article  CAS  PubMed  Google Scholar 

  44. Bang B, Gniadecki R, Gajkowska B (2005) Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Exp Dermatol 14(4):266–272

    Article  CAS  PubMed  Google Scholar 

  45. Gniadecki R (2004) Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun 320(1):165–169

    Article  CAS  PubMed  Google Scholar 

  46. Bakht O, Pathak P, London E (2007) Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophys J 93(12):4307–4318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sengupta P, Holowka D, Baird B (2007) Fluorescence resonance energy transfer between lipid probes detects nanoscopic heterogeneity in the plasma membrane of live cells. Biophys J 92(10):3564–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Nelson LD, Johnson AE, London E (2008) How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O–lipid raft interaction. J Biol Chem 283(8):4632–4642

    Article  CAS  PubMed  Google Scholar 

  49. Lin Q, London E (2013) Transmembrane protein (perfringolysin O) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol. Biophys J 105(12):2733–2742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Phalen T, Kielian M (1991) Cholesterol is required for infection by Semliki Forest virus. J Cell Biol 112(4):615–623

    Article  CAS  PubMed  Google Scholar 

  51. Okamoto Y et al (2000) Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells. J Biol Chem 275(9):6439–6446

    Article  CAS  PubMed  Google Scholar 

  52. Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin (1A) receptors from bovine hippocampus. Biochim Biophys Acta 1663(1–2):188–200

    Article  CAS  PubMed  Google Scholar 

  53. Pucadyil TJ, Shrivastava S, Chattopadhyay A (2005) Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin (1A) receptors. Biochem Biophys Res Commun 331(2):422–427

    Article  CAS  PubMed  Google Scholar 

  54. Rouquette-Jazdanian AK et al (2006) Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal 18(1):105–122

    Article  CAS  PubMed  Google Scholar 

  55. Klink M et al (2013) Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis. PLoS One 8(9):e73333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Neuvonen M et al (2014) Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLoS One 9(8):e103743

    Article  PubMed Central  PubMed  Google Scholar 

  57. Campbell S et al (2004) The raft-promoting property of virion-associated cholesterol, but not the presence of virion-associated Brij 98 rafts, is a determinant of human immunodeficiency virus type 1 infectivity. J Virol 78(19):10556–10565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Gimpl G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36(36):10959–10974

    Article  CAS  PubMed  Google Scholar 

  59. Klein U, Gimpl G, Fahrenholz F (1995) Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34(42):13784–13793

    Article  CAS  PubMed  Google Scholar 

  60. Pang L, Graziano M, Wang S (1999) Membrane cholesterol modulates galanin–GalR2 interaction. Biochemistry 38(37):12003–12011

    Article  CAS  PubMed  Google Scholar 

  61. Papanikolaou A et al (2005) Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39. J Biol Chem 280(28):26406–26414

    Article  CAS  PubMed  Google Scholar 

  62. Singh P et al (2009) Differential effects of cholesterol and desmosterol on the ligand binding function of the hippocampal serotonin (1A) receptor: implications in desmosterolosis. Biochim Biophys Acta 1788(10):2169–2173

    Article  CAS  PubMed  Google Scholar 

  63. Westover EJ et al (2003) Cholesterol depletion results in site-specific increases in epidermal growth factor receptor phosphorylation due to membrane level effects. Studies with cholesterol enantiomers. J Biol Chem 278(51):51125–51133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Yamamoto M et al (2011) Structural requirements of virion-associated cholesterol for infectivity, buoyant density and apolipoprotein association of hepatitis C virus. J Gen Virol 92(Pt 9):2082–2087

    Article  CAS  PubMed  Google Scholar 

  65. Romanenko VG et al (2009) The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi-K channels. Am J Physiol Cell Physiol 296(4):C878–C888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Romanenko VG, Rothblat GH, Levitan I (2002) Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J 83(6):3211–3222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Romanenko VG, Rothblat GH, Levitan I (2004) Sensitivity of volume-regulated anion current to cholesterol structural analogues. J Gen Physiol 123(1):77–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang J, Wu F, Shi C (2013) Substitution of membrane cholesterol with beta-sitosterol promotes nonamyloidogenic cleavage of endogenous amyloid precursor protein. Neuroscience 247:227–233

    Article  CAS  PubMed  Google Scholar 

  69. Sooksawate T, Simmonds MA (2001) Influence of membrane cholesterol on modulation of the GABA(A) receptor by neuroactive steroids and other potentiators. Br J Pharmacol 134(6):1303–1311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sooksawate T, Simmonds MA (2001) Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40(2):178–184

    Article  CAS  PubMed  Google Scholar 

  71. Brown AJ et al (2002) Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol Cell 10(2):237–245

    Article  CAS  PubMed  Google Scholar 

  72. Picazo-Juarez G et al (2011) Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem 286(28):24966–24976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Rentero C et al (2008) Functional implications of plasma membrane condensation for T cell activation. PLoS One 3(5):e2262

    Article  PubMed Central  PubMed  Google Scholar 

  74. Byfield FJ et al (2006) Evidence for the role of cell stiffness in modulation of volume-regulated anion channels. Acta Physiol (Oxf) 187(1–2):285–294

    Article  CAS  Google Scholar 

  75. Fahrenholz F, Klein U, Gimpl G (1995) Conversion of the myometrial oxytocin receptor from low to high affinity state by cholesterol. Adv Exp Med Biol 395:311–319

    CAS  PubMed  Google Scholar 

  76. Cross NL (1996) Effect of cholesterol and other sterols on human sperm acrosomal responsiveness. Mol Reprod Dev 45(2):212–217

    Article  CAS  PubMed  Google Scholar 

  77. Cross NL (1999) Effect of methyl-beta-cyclodextrin on the acrosomal responsiveness of human sperm. Mol Reprod Dev 53(1):92–98

    Article  CAS  PubMed  Google Scholar 

  78. Nimmo MR, Cross NL (2003) Structural features of sterols required to inhibit human sperm capacitation. Biol Reprod 68(4):1308–1317

    Article  CAS  PubMed  Google Scholar 

  79. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96(20):11041–11048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. DeBose-Boyd RA et al (1999) Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99(7):703–712

    Article  CAS  PubMed  Google Scholar 

  81. Goldstein JL, Rawson RB, Brown MS (2002) Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys 397(2):139–148

    Article  CAS  PubMed  Google Scholar 

  82. Nohturfft A et al (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102(3):315–323

    Article  CAS  PubMed  Google Scholar 

  83. Dykstra M et al (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  CAS  PubMed  Google Scholar 

  84. Gaus K et al (2005) Condensation of the plasma membrane at the site of T lymphocyte activation. J Cell Biol 171(1):121–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Singh P et al (2011) Desmosterol replaces cholesterol for ligand binding function of the serotonin (1A) receptor in solubilized hippocampal membranes: support for nonannular binding sites for cholesterol? Biochim Biophys Acta 1808(10):2428–2434

    Article  CAS  PubMed  Google Scholar 

  86. Goodenough S, Schafer M, Behl C (2003) Estrogen-induced cell signalling in a cellular model of Alzheimer’s disease. J Steroid Biochem Mol Biol 84(2–3):301–305

    Article  CAS  PubMed  Google Scholar 

  87. Huang Z, London E (2013) Effect of cyclodextrin and membrane lipid structure upon cyclodextrin–lipid interaction. Langmuir 29(47):14631–14638

    Article  CAS  PubMed  Google Scholar 

  88. Stubs G et al (2009) Acylated cholesteryl galactosides are specific antigens of borrelia causing lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 284(20):13326–13334

    Article  PubMed Central  PubMed  Google Scholar 

  89. Simon-Plas F et al (2011) An update on plant membrane rafts. Curr Opin Plant Biol 14(6):642–649

    Article  CAS  PubMed  Google Scholar 

  90. Sunshine C, McNamee MG (1994) Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta 1191(1):59–64

    Article  CAS  PubMed  Google Scholar 

  91. Addona GH et al (2003) Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta 1609(2):177–182

    Article  CAS  PubMed  Google Scholar 

  92. Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25(4):830–840

    Article  CAS  PubMed  Google Scholar 

  93. Singh DK et al (2009) Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem 284(44):30727–30736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Bukiya AN et al (2011) Specificity of cholesterol and analogs to modulate BK channels points to direct sterol–channel protein interactions. J Gen Physiol 137(1):93–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Razinkov VI, Cohen FS (2000) Sterols and sphingolipids strongly affect the growth of fusion pores induced by the hemagglutinin of influenza virus. Biochemistry 39(44):13462–13468

    Article  CAS  PubMed  Google Scholar 

  96. Popot JL et al (1978) Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids. Eur J Biochem 85(1):27–42

    Article  CAS  PubMed  Google Scholar 

  97. Vitrac H, Bogdanov M, Dowhan W (2013) In vitro reconstitution of lipid-dependent dual topology and post assembly topological switching of a membrane protein. Proc Natl Acad Sci USA 110(23):9338–9343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant GM 099892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin London.

Additional information

Part of the topical collection G. J. Schroepfer, Jr. Memorial Sterol Symposium.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., London, E. Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions. Lipids 50, 721–734 (2015). https://doi.org/10.1007/s11745-015-4007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4007-y

Keywords

Navigation