Lipids

, Volume 50, Issue 5, pp 493–501 | Cite as

Cistus ladanifer L. Shrub is Rich in Saturated and Branched Chain Fatty Acids and their Concentration Increases in the Mediterranean Dry Season

  • Olinda Guerreiro
  • Susana P. Alves
  • Maria F. Duarte
  • Rui J. B. Bessa
  • Eliana Jerónimo
Original Article

Abstract

The Cistus ladanifer L. shrub is a widespread species of the Mediterranean region that is available as a feed source for ruminants all the year round, constituting a source of energy and nutrients when most of the vegetation is dry. However, there is no trustworthy information about the fatty acid composition of C. ladanifer, as well as no information about the seasonal and age related changes in their fatty acid composition. Thus, we collected the aerial parts of C. ladanifer plants of two age groups [young vs. older ones (2–6 years old)] during four consecutive seasons to characterize their fatty acid composition. The fatty acid composition of C. ladanifer is dominated by saturated fatty acids including the occurrence of two methyl branched chain fatty acids (BCFA), the iso-19:0 and iso-21:0, which as far as we know were detected for the first time in shrubs. Also, we demonstrated that several labdane type compounds might interfere with the fatty acid analysis of C. ladanifer. Marked seasonal changes in BCFA and polyunsaturated fatty acids (PUFA) were found, suggesting that BCFA can replace PUFA in plant lipids at high environmental temperatures.

Keywords

Cistus ladanifer Seasonal variation Plant age Fatty acids Branched chain fatty acids Gas chromatography Mass spectrometry 

Abbreviations

BCFA

Branched chain fatty acid(s)

FA

Fatty acid(s)

FAME

Fatty acid methyl ester(s)

PUFA

Polyunsaturated fatty acid(s)

SFA

Saturated fatty acid(s)

References

  1. 1.
    Teixeira S, Mendes A, Alves A, Santos L (2007) Simultaneous distillation-extraction of high-value volatile compounds from Cistus ladanifer L. Anal Chim Acta 584:439–446. doi:10.1016/j.aca.2006.11.054 CrossRefPubMedGoogle Scholar
  2. 2.
    Barrajon-Catalan E, Fernandez-Arroyo S, Saura D, Guillen E, Fernandez-Gutierrez A, Segura-Carretero A, Micol V (2010) Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol 48:2273–2282. doi:10.1016/j.fct.2010.05.060 CrossRefPubMedGoogle Scholar
  3. 3.
    Chaves N, Sosa T, Alias JC, Escudero JC (2001) Identification and effects of interaction phytotoxic compounds from exudate of cistus ladanifer leaves. J Chem Ecol 27:611–621. doi:10.1023/A:1010336921853 CrossRefPubMedGoogle Scholar
  4. 4.
    Ferrandis P, Herranz J, Martinez-Sanchez J (1999) Effect of fire on hard-coated Cistaceae seed banks and its influence on techniques for quantifying seed banks. Plant Ecol 144:103–114. doi:10.1023/A:1009816309061 CrossRefGoogle Scholar
  5. 5.
    Dentinho MT, Navas D, Potes J (2005) Chemical and nutritional evaluation of food complements for large cattle breeding, in Montado de Azinho area. Pastagens Forrag 26(27):41–46Google Scholar
  6. 6.
    Jeronimo E, Alves SP, Dentinho MTP, Martins SV, Prates JAM, Vasta V, Santos-Silva J, Bessa RJB (2010) Effect of grape seed extract, Cistus ladanifer L., and vegetable oil supplementation on fatty acid composition of abomasal digesta and intramuscular fat of lambs. J Agric Food Chem 58:10710–10721. doi:10.1021/jf1021626 CrossRefPubMedGoogle Scholar
  7. 7.
    Jeronimo E, Alfaia CMM, Alves SP, Dentinho MTP, Prates JAM, Vasta V, Santos-Silva J, Bessa RJB (2012) Effect of dietary grape seed extract and Cistus ladanifer L. in combination with vegetable oil supplementation on lamb meat quality. Meat Sci 92:841–847. doi:10.1016/j.meatsci.2012.07.011 CrossRefPubMedGoogle Scholar
  8. 8.
    Dentinho MTP, Belo AT, Bessa RJB (2014) Digestion, ruminal fermentation and microbial nitrogen supply in sheep fed soybean meal treated with Cistus ladanifer L. tannins. Small Rumin Res 119:57–64. doi:10.1016/j.smallrumres.2014.02.012 CrossRefGoogle Scholar
  9. 9.
    Mariotti JP, Tomi F, Casanova J, Costa J, Bernardini AF (1997) Composition of the essential oil of Cistus ladaniferus L. cultivated in Corsica (France). Flavour Fragr J 12:147–151. doi:10.1002/(SICI)1099-1026(199705)12:3<147::AID-FFJ631>3.0.CO;2-Q CrossRefGoogle Scholar
  10. 10.
    Barros L, Duenas M, Alves CT, Silva S, Henriques M, Santos-Buelga C, Ferreira ICFR (2013) Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind Crops Prod 41:41–45. doi:10.1016/j.indcrop.2012.03.038 CrossRefGoogle Scholar
  11. 11.
    Chaves N, Escudero JC, Gutierrez Merino C (1997) Quantitative variation of flavonoids among individuals of a Cistus ladanifer population. Biochem Syst Ecol 25:429–435. doi:10.1016/S0305-1978(97)00019-7 CrossRefGoogle Scholar
  12. 12.
    Gomes PB, Mata VG, Rodrigues AE (2005) Characterization of the Portuguese-grown Cistus ladanifer essential oil. J Essent Oil Res 17:160–165. doi:10.1080/10412905.2005.9698864 CrossRefGoogle Scholar
  13. 13.
    Verdeguer M, Blazquez MA, Boira H (2011) Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat Prod Res 26:1602–1609. doi:10.1080/14786419.2011.592835 CrossRefPubMedGoogle Scholar
  14. 14.
    Sosa T, Alias JC, Escudero JC, Chaves N (2005) Interpopulational variation in the flavonoid composition of Cistus ladanifer L. exudate. Biochem Syst Ecol 33:353–364. doi:10.1016/j.bse.2004.10.011 CrossRefGoogle Scholar
  15. 15.
    Barrajon-Catalan E, Fernandez-Arroyo S, Roldan C, Guillen E, Saura D, Segura-Carretero A, Micol V (2011) A systematic study of the polyphenolic composition of aqueous extracts deriving from several cistus genus species: evolutionary relationship. Phytochem Anal 22:303–312. doi:10.1002/pca.1281 CrossRefPubMedGoogle Scholar
  16. 16.
    Fernandez-Arroyo S, Barrajon-Catalan E, Micol V, Segura-Carretero A, Fernandez-Gutierrez A (2010) High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a Cistus ladanifer aqueous extract. Phytochem Anal 21:307–313. doi:10.1002/pca.1200 CrossRefPubMedGoogle Scholar
  17. 17.
    Dias LS, Moreira I (2002) Interaction between water soluble and volatile compounds of Cistus ladanifer L. Chemoecology 12:77–82. doi:10.1007/s00049-002-8329-x CrossRefGoogle Scholar
  18. 18.
    Guimaraes R, Barros L, Carvalho AM, Sousa MJ, Morais JS, Ferreira ICFR (2009) Aromatic plants as a source of important phytochemicals: vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind Crops Prod 30:427–430. doi:10.1016/j.indcrop.2009.08.002 CrossRefGoogle Scholar
  19. 19.
    Ammar H, Lopez S, Gonzalez JS (2005) Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Anim Feed Sci Technol 119:323–331. doi:10.1016/j.anifeedsci.2004.12.013 CrossRefGoogle Scholar
  20. 20.
    Sfougaris AI, Nastis AS, Papageorgiou NK (1996) Food resources and quality for the introduced Cretan wild goat or agrimi Capra aegagrus cretica on Atalandi Island, Greece, and implications for ecosystem management. Biol Conserv 78:239–245. doi:10.1016/S0006-3207(96)00054-7 CrossRefGoogle Scholar
  21. 21.
    Sukhija PS, Palmquist DL (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36:1202–1206. doi:10.1021/jf00084a019 CrossRefGoogle Scholar
  22. 22.
    Palmquist DL, Jenkins TC (2003) Challenges with fats and fatty acid methods. J Anim Sci 81:3250–3254PubMedGoogle Scholar
  23. 23.
    Enzell CR, Ryhage R (1965) Mass spectrometric studies of diterpenes 1 carbodicyclic diterpenes. Ark Kem 23:367–399Google Scholar
  24. 24.
    Domenech-Carbo MT, Cruz-Canizares J, Osete-Cortina L, Domenech-Carbo A, David H (2009) Ageing behaviour and analytical characterization of the Jatoba resin collected from Hymenaea stigonocarpa Mart. Int J Mass Spectrom 284:81–92. doi:10.1016/j.ijms.2008.12.015 CrossRefGoogle Scholar
  25. 25.
    David JP, Ferrari J, David JM, Guimaraes AG, Lima FWDM, de Souza GLS (2007) New triterpene and antibacterial labdenoic acid derivatives from Moldenhawera nutans. J Brazil Chem Soc 18:1585–1589. doi:10.1590/S0103-50532007000800022 CrossRefGoogle Scholar
  26. 26.
    Francisco A, Dentinho MT, Alves SP, Portugal PV, Fernandes F, Sengo S, Jeronimo E, Oliveira MA, Costa P, Sequeira A, Bessa RJB, Santos-Silva J (2015) Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci 100:275–282. doi:10.1016/j.meatsci.2014.10.014 CrossRefPubMedGoogle Scholar
  27. 27.
    Guil-Guerrero JL (2014) Common mistakes about fatty acids identification by gas–liquid chromatography. J Food Comp Anal 33:153–154. doi:10.1016/j.jfca.2013.12.006 CrossRefGoogle Scholar
  28. 28.
    Ruiz-Lopez N, Sayanova O, Napier JA, Haslam RP (2012) Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot 63:2397–2410. doi:10.1093/jxb/err454 CrossRefPubMedGoogle Scholar
  29. 29.
    Martins ANC, Simeonov SP, Frija LMT, Viveiros R, Lourenco A, da Silva MS, Casimiro T, Afonso CAM (2014) Isolation, analytical quantification and seasonal variation of labdanolic acid from the Portuguese-grown Cistus ladaniferus. Ind Crop Prod 60:226–232. doi:10.1016/j.indcrop.2014.06.012 CrossRefGoogle Scholar
  30. 30.
    Depascualt J, Bellido IS, Basabe P, Marcos IS, Ruano LF, Urones JG (1982) Labdane diterpenoids from Cistus-Ladaniferus. Phytochemistry 21:899–901. doi:10.1016/0031-9422(82)80089-7 CrossRefGoogle Scholar
  31. 31.
    Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK (2014) Genus Cistus: a model for exploring labdane-type diterpenes biosynthesis and a natural source of high value products with biological, aromatic and pharmacological properties. Front Chem. doi:10.3389/fchem.2014.00035 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Weyerstahl P, Marschall H, Weirauch M, Thefeld K, Surburg H (1998) Constituents of commercial labdanum oil. Flavour Fragr J 13:295–318. doi:10.1002/(SICI)1099-1026(1998090)13:5<295:AID-FFJ751>3.0.CO;2-I CrossRefGoogle Scholar
  33. 33.
    Tsydendambaev VD, Christie WW, Brechany EY, Vereshchagin AG (2004) Identification of unusual fatty acids of four alpine plant species from the Pamirs. Phytochemistry 65:2695–2703. doi:10.1016/j.phytochem.2004.08.021 CrossRefPubMedGoogle Scholar
  34. 34.
    Radunz A (1987) On the function of methyl-branched chain fatty acids in phospholipids of cell membranes of higher plants. In: Stumpf P, Mudd JB, Nes WD (eds) The metabolism, structure, and function of plant lipids. Springer, New York, pp 197–200. doi:10.1007/978-1-4684-5263-1_34 CrossRefGoogle Scholar
  35. 35.
    Arrendale RF, Severson RF, Chortyk OT, Stephenson MG (1988) Isolation and Identification of the wax esters from the cuticular waxes of green tobacco leaf. Beitr Tab 14:67–84Google Scholar
  36. 36.
    Kroumova AB, Wagner GJ (1999) Mechanisms for elongation in the biosynthesis of fatty acid components of epi-cuticular waxes. Phytochemistry 50:1341–1345. doi:10.1016/S0031-9422(98)00515-9 CrossRefGoogle Scholar
  37. 37.
    Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM, Dewhurst RJ (2006) Factors affecting odd- and branched-chain fatty acids in milk: a review. Anim Feed Sci Technol 131:389–417. doi:10.1016/j.anifeedsci.2006.06.017 CrossRefGoogle Scholar
  38. 38.
    Kaneda T (1977) Fatty-acids of Genus Bacillus—example of branched-chain preference. Bacteriol Rev 41:391–418PubMedCentralPubMedGoogle Scholar
  39. 39.
    Wongtangtintharn S, Oku H, Iwasaki H, Toda T (2004) Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol 50:137–143. doi:10.3177/jnsv.50.137 CrossRefPubMedGoogle Scholar
  40. 40.
    Ran-Ressler RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni ZE, Koren O, Ley RE, Brenna J, Dvorak B (2011) Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a Neonatal Rat model. PLoS ONE 6(12):e29032. doi:10.1371/journal.pone.0029032 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Pearcy RW (1978) Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol 61:484–486CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Falcone D, Ogas J, Somerville C (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol 4:17. doi:10.1186/1471-2229-4-17 CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Glasser F, Doreau M, Maxin G, Baumont R (2013) Fat and fatty acid content and composition of forages: a meta-analysis. Anim Feed Sci Technol 185:19–34. doi:10.1016/j.anifeedsci.2013.06.010 CrossRefGoogle Scholar

Copyright information

© AOCS 2015

Authors and Affiliations

  • Olinda Guerreiro
    • 1
    • 2
    • 3
  • Susana P. Alves
    • 2
    • 3
  • Maria F. Duarte
    • 1
  • Rui J. B. Bessa
    • 2
    • 3
  • Eliana Jerónimo
    • 1
    • 3
  1. 1.Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)Instituto Politécnico de Beja (IPBeja)BejaPortugal
  2. 2.Faculdade de Medicina VeterináriaULisboa, Avenida da Universidade TécnicaLisbonPortugal
  3. 3.CIISA, Centro de Investigação Interdisciplinar em Sanidade AnimalAvenida da Universidade TécnicaLisbonPortugal

Personalised recommendations