, Volume 50, Issue 2, pp 111–120 | Cite as

BMP7 Drives Human Adipogenic Stem Cells into Metabolically Active Beige Adipocytes

  • Meshail Okla
  • Jung-Heun Ha
  • Ryan E. Temel
  • Soonkyu Chung
Original Article


Adult humans have a substantial amount of inducible-brown (or beige) fat, which is associated with increased energy expenditure and reduced weight gain via thermogenesis. Despite the identification of key regulators of beige adipogenesis, impacts of dietary factors on adaptive thermogenesis are largely unknown, partly due to a lack of validated human cell models. Bone morphogenetic protein 7 (BMP7) is known to promote brown adipogenesis in rodent and human progenitor cells. However, controversy still surrounds the cellular identity in BMP7-mediated transition of white to brown adipocytes. The aim of this study was to confirm BMP7-derived human adipocytes as a relevant in vitro model of human beige adipocyte by verifying the cellular lineage and metabolic activity. In this study, we hypothesized that pre-exposure of the stromal vascular (SV) fraction of primary human adipogenic precursor cells (hASC) to BMP7 would convert metabolically active brown adipocytes. Our results showed that exposure of hASC to human BMP7 was associated with significant escalation of (1) UCP1 gene expression, a signature gene of brown adipocytes, (2) beige specific marker gene expression (i.e., CD137 and TMEM26), (3) glucose and fatty acid uptake, and (4) basal and cAMP-stimulated oxygen consumption rate compared to white adipocyte control. Taken together, we demonstrated that BMP7 mediates conversion of hASC into metabolically active beige adipocytes. By confirming the cellular identity and metabolic activity, this BMP7-induced human beige adipocytes from hASC should aid in the discovery and assessment of bioactive molecules to promote adaptive thermogenesis.


Brown adipose tissue Beige adipogenesis Bone morphogenetic protein 7 UCP1 Human adipose-derived stem cells 



Antimycin A




Adipogenic stem cells


Brown adipose tissue


Brain derived neurotrophic factor




Bone morphogenetic protein 7


8-Bromo cyclic AMP


Cluster of differentiation 137


Cell-death inducing DFF45-like effector A


Fibroblast growth factor 21


Fibronectin type III domain containing 5 (precursor of Irisin)


Glucose transporter 4


Oleic acid


Peroxisome proliferator-activated receptor gamma


PR domain containing 16


Subcutaneous fat


Stromal vascular




Transmembrane protein 26


Uncoupling protein 1


White adipose tissue



This work was supported in part by grants from the NIH-NCRR to SC (1UL1RR029890), the NIH-1P20GM104320 (Project 5) to SC, and a NIH-NHLBI grant to RET (R00HL088528).

Conflict of interest


Supplementary material

11745_2014_3981_MOESM1_ESM.docx (865 kb)
Supplementary material 1 (DOCX 864 kb)


  1. 1.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359PubMedCrossRefGoogle Scholar
  2. 2.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRefGoogle Scholar
  4. 4.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRefGoogle Scholar
  5. 5.
    Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M (2013) Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond) 38:812–817CrossRefGoogle Scholar
  6. 6.
    Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lidell ME, Betz MJ, Dahlqvist LO, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634PubMedCrossRefGoogle Scholar
  9. 9.
    Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, Chacko AT, Deschamps LN, Herder LM, Truchan N, Glasgow AL, Holman AR, Gavrila A, Hasselgren PO, Mori MA, Molla M, Tseng YH (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRefGoogle Scholar
  13. 13.
    Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP, Spiegelman BM (2013) Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci USA 110:12480–12485PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenwald M, Perdikari A, Rulicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenwald M, Wolfrum C (2014) The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3:4–9PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7:e49452PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14:324–338PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309PubMedCrossRefGoogle Scholar
  21. 21.
    Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260PubMedCrossRefGoogle Scholar
  23. 23.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng YH (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 108:143–148PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T, Eckel J (2014) BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol 306:C431–C440PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao L, Ha JH, Okla M, Chung S (2014) Activation of autophagy and AMPK by gamma-tocotrienol suppresses the adipogenesis in human adipose derived stem cells. Mol Nutr Food Res 58:569–579PubMedCrossRefGoogle Scholar
  27. 27.
    Chung S, LaPoint K, Martinez K, Kennedy A, Boysen SM, McIntosh MK (2006) Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147:5340–5351PubMedCrossRefGoogle Scholar
  28. 28.
    Chung S, Gebre AK, Seo J, Shelness GS, Parks JS (2010) A novel role for ABCA1-generated large pre-beta migrating nascent HDL in the regulation of hepatic VLDL triglyceride secretion. J Lipid Res 51:729–742PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci USA 103:12167–12172PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229PubMedCrossRefGoogle Scholar
  32. 32.
    Rangappa S, Fen C, Lee EH, Bongso A, Sim EK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779PubMedCrossRefGoogle Scholar
  33. 33.
    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205PubMedCrossRefGoogle Scholar
  34. 34.
    Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Silva FJ, Holt DJ, Vargas V, Yockman J, Boudina S, Atkinson D, Grainger DW, Revelo MP, Sherman W, Bull DA, Patel AN (2014) Metabolically active human brown adipose tissue derived stem cells. Stem Cells 32:572–581PubMedCrossRefGoogle Scholar
  36. 36.
    Nishio M, Saeki K (2014) Differentiation of human pluripotent stem cells into highly functional classical brown adipocytes. Methods Enzymol 537:177–197PubMedCrossRefGoogle Scholar
  37. 37.
    Ahfeldt T, Schinzel RT, Lee YK, Hendrickson D, Kaplan A, Lum DH, Camahort R, Xia F, Shay J, Rhee EP, Clish CB, Deo RC, Shen T, Lau FH, Cowley A, Mowrer G, Al-Siddiqi H, Nahrendorf M, Musunuru K, Gerszten RE, Rinn JL, Cowan CA (2012) Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14:209–219PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Gunawardana SC (2012) Therapeutic value of brown adipose tissue: correcting metabolic disease through generating healthy fat. Adipocyte 1:250–255PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Zhang H, Schulz TJ, Espinoza DO, Huang TL, Emanuelli B, Kristiansen K, Tseng YH (2010) Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis. Mol Cell Biol 30:4224–4233PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Townsend KL, Suzuki R, Huang TL, Jing E, Schulz TJ, Lee K, Taniguchi CM, Espinoza DO, McDougall LE, Zhang H, He TC, Kokkotou E, Tseng YH (2012) Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J 26:2187–2196PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Townsend KL, An D, Lynes MD, Huang TL, Zhang H, Goodyear LJ, Tseng YH (2013) Increased mitochondrial activity in BMP7-treated brown adipocytes, due to increased. Antioxid Redox Signal 19:243–257PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Saito M (2014) Human brown adipose tissue: regulation and anti-obesity potential. Endocr J 61:409–416PubMedCrossRefGoogle Scholar
  43. 43.
    Raschke S, Elsen M, Gassenhuber H, Sommerfeld M, Schwahn U, Brockmann B, Jung R, Wisloff U, Tjonna AE, Raastad T, Hallen J, Norheim F, Drevon CA, Romacho T, Eckardt K, Eckel J (2013) Evidence against a beneficial effect of irisin in humans. PLoS One 8:e73680PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee P, Swarbrick MM, Zhao JT, Ho KK (2011) Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology 152:3597–3602PubMedCrossRefGoogle Scholar
  45. 45.
    Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, Saito M (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Saito M, Yoneshiro T (2013) Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr Opin Lipidol 24:71–77PubMedCrossRefGoogle Scholar
  47. 47.
    Shen W, Chuang CC, Martinez K, Reid T, Brown JM, Xi L, Hixson L, Hopkins R, Starnes J, McIntosh M (2013) Conjugated linoleic acid reduces adiposity and increases markers of browning and inflammation in white adipose tissue of mice. J Lipid Res 54:909–922PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Meshail Okla
    • 1
    • 2
  • Jung-Heun Ha
    • 2
  • Ryan E. Temel
    • 3
    • 4
  • Soonkyu Chung
    • 1
    • 2
  1. 1.Department of Nutrition and Health SciencesUniversity of NebraskaLincolnUSA
  2. 2.Department of Food Science and Human NutritionUniversity of FloridaGainesvilleUSA
  3. 3.Section on Lipid Sciences, Department of PathologyWake Forest University Health SciencesWinston-SalemUSA
  4. 4.Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUSA

Personalised recommendations