, Volume 50, Issue 1, pp 3–12 | Cite as

13-Oxo-9(Z),11(E),15(Z)-octadecatrienoic Acid Activates Peroxisome Proliferator-Activated Receptor γ in Adipocytes

  • Haruya Takahashi
  • Hideyuki Hara
  • Tsuyoshi Goto
  • Kosuke Kamakari
  • Nomura Wataru
  • Shinsuke Mohri
  • Nobuyuki Takahashi
  • Hideyuki Suzuki
  • Daisuke Shibata
  • Teruo Kawada
Original Article


Peroxisome proliferator-activated receptor (PPAR)γ is expressed in adipose tissue and plays a key role in the regulation of adipogenesis. PPARγ activators are known to have potent antihyperglycemic activity and are used to treat insulin resistance associated with diabetes. Therefore, many natural and synthetic agonists of PPARγ are used in the treatment of glucose disorders. In the present study, we found that 13-oxo-9(Z),11(E),15(Z)-octadecatrienoic acid (13-oxo-OTA), a linolenic acid derivative, is present in the extract of tomato (Solanum lycopersicum), Mandarin orange (Citrus reticulata), and bitter gourd (Momordica charantia). We also found that 13-oxo-OTA activated PPARγ and induced the mRNA expression of PPARγ target genes in adipocytes, thereby promoting differentiation. Furthermore, 13-oxo-OTA induced secretion of adiponectin and stimulated glucose uptake in adipocytes. To our knowledge, this is the first study to report that 13-oxo-OTA induces adipogenesis through PPARγ activation and to present 13-oxo-OTA as a valuable food-derived compound that may be applied in the management of glucose metabolism disorders.


PPARγ Oxylipin Adipocyte LC–MS Adiponectin Glucose uptake 



13-Oxo-9,11-octadecadienoic acid


13-Oxo-9(Z),11(E),15(Z)-octadecatrienoic acid


9-Oxo-10,12-octadecadienoic acid


Fatty acid-binding protein


Bicinchoninic acid


Bovine serum albumin


CCAAT/enhancer binding protein


Dulbecco’s modified Eagle’s medium




cis-10-Heptadecenoic acid


HEPES-Krebs–Ringer buffer


High molecular weight


High-performance liquid chromatography




Liquid chromatography–mass spectrometry


Linoleic acid


Low molecular weight


Linolenic acid


Lipoprotein lipase


Phosphate-buffered saline


Peroxisome proliferator-activated receptors


PPAR response elements


Polyvinylidene difluoride


Quadrupole-time-of-flight MS


Retinoid X receptor


Sodium dodecyl sulfate polyacrylamide gel electrophoresis






Ultra performance LC



The authors thank S. Shinoto and M. Sakai for secretarial and technical support, respectively. This work was supported in part by Research and Development Projects for Application in Promoting New Policies Agriculture, Forestry, and Fisheries of Japan, by grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (22228001 and 24688015), and by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (24521).


  1. 1.
    Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138PubMedCrossRefGoogle Scholar
  2. 2.
    Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMedGoogle Scholar
  3. 3.
    Chinetti G, Fruchart JC, Staeles B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505PubMedCrossRefGoogle Scholar
  4. 4.
    Duval C, Chinetti G, Trottein F, Fruchart JC, Staeles B (2002) The role of PPARs in atherosclerosis. Trends Mol Med 8:422–430PubMedCrossRefGoogle Scholar
  5. 5.
    Goldenberg I, Benderly M, Goldbourt U (2008) Update on the use of fibrates: focus on bezafibrate. Vasc Health Risk Manag 4:131–141PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J 13:17PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Brun RP, Spiegelman BM (1997) PPAR gamma and molecular control of adipogenesis. J Endocrinol 155:217–218PubMedCrossRefGoogle Scholar
  8. 8.
    Kintscher U, Law RE (2005) PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab 288:E287–E291PubMedCrossRefGoogle Scholar
  9. 9.
    Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999PubMedCrossRefGoogle Scholar
  10. 10.
    Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J (1994) Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 331:1188–1193PubMedCrossRefGoogle Scholar
  11. 11.
    Han KL, Jung MH, Sohn JH, Hwang JK (2006) Ginsenoside 20(S)-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 adipocytes. Bio Pharm Bull 29:110–113CrossRefGoogle Scholar
  12. 12.
    Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M (2007) Emodin with PPARγ ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-L1 cells. Biochem Biophys Res Commun 353:225–230PubMedCrossRefGoogle Scholar
  13. 13.
    Shang W, Yang Y, Jiang B, Jin H, Zhou L, Liu S, Chen M (2007) Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARγ2 and C/EBPα gene expression. Life Sci 80:618–625PubMedCrossRefGoogle Scholar
  14. 14.
    Choi SS, Cha BY, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT (2009) Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sci 84:908–914PubMedCrossRefGoogle Scholar
  15. 15.
    Shin DW, Kim SN, Lee SM, Lee W, Song MJ, Park SM, Lee TR, Baik JH, Kim HK, Hong JH, Noh M (2009) (−)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem Pharmacol 77:125–133PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi N, Yao R, Kang MS, Senda M, Ando C, Nishimura K, Goto T, Hirai S, Ezaki Y, Kawada T (2011) Dehydroabietic acid activates peroxisome proliferator-activated receptor-γ and stimulates insulin-dependent glucose uptake into 3T3-L1 adipocytes. BioFactors 37:309–314PubMedCrossRefGoogle Scholar
  17. 17.
    Grechkin A (1998) Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res 37:317–352PubMedCrossRefGoogle Scholar
  18. 18.
    Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378PubMedCrossRefGoogle Scholar
  19. 19.
    Gardner AN, Tarchevsky IA (1999) The lipoxygenase signaling system. Russ J Plant Physiol 46:114–123Google Scholar
  20. 20.
    Reyes C, Ávila-Román J, Ortega MJ, Jara A, García-Mauriño S, Motilva V, Zubía E (2014) Oxylipins from the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana and their activity as TNF-α inhibitors. Phytochemistry 102:152–161CrossRefGoogle Scholar
  21. 21.
    Kim YI, Hirai S, Takahashi H, Goto T, Ohyane C, Tsugane T, Konishi C, Fujii T, Inai S, Iijima Y, Aoki K, Shibata D, Takahashi N, Kawada T (2011) 9-oxo-10(E),12(E)-Octadecadienoic acid derived from tomato is a potent PPAR α agonist to decrease triglyceride accumulation in mouse primary hepatocytes. Mol Nutr Food Res 55:585–593PubMedCrossRefGoogle Scholar
  22. 22.
    Kim YI, Hirai S, Goto T, Ohyane C, Takahashi H, Tsugane T, Konishi C, Fujii T, Inai S, Iijima Y, Aoki K, Shibata D, Takahashi N, Kawada T (2012) Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice. PLoS One 7:e31317PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Reinhold A, Martin H, Tanja S, Michael G, Arthur WB, Katrin M, Daniela V, Hans H, Jürgen S, Werner F, Gerhard R (2007) 13-Oxo-ODE is an endogenous ligand for PPARγ in human colonic epithelial cells. Biochem Pharmacol 74:612–622CrossRefGoogle Scholar
  24. 24.
    Smilowitz JT, Zivkovic AM, Wan YJ, Watkins SM, Nording ML, Hammock BD, German JB (2013) Nutritional lipidomics: molecular metabolism, analytics, and diagnostics. Mol Nutr Food Res 57:1319–1335PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T (2002) Dual action of isoprenols from herbal medicines on both PPARγ and PPARα in 3T3- L1 adipocytes and HepG2 hepatocytes. FEBS Lett 514:315–322PubMedCrossRefGoogle Scholar
  26. 26.
    Takahashi N, Kawada T, Goto T, Kim CS, Taimatsu A, Egawa K, Yamamoto T, Jisaka M, Nishimura K, Yokota K, Yu R, Fushiki T (2003) Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Lett 550:190–194PubMedCrossRefGoogle Scholar
  27. 27.
    Goto T, Nagai H, Egawa K, Kim YI, Kato S, Taimatsu A, Sakamoto T, Ebisu S, Hohsaka T, Miyagawa H, Murakami S, Takahashi N, Kawada T (2011) Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist. Biochem J 438:111–119PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Iwata M, Haruta T, Usui I, Takata Y, Takano A, Uno T, Kawahara J, Ueno E, Sasaoka T, Ishibashi O, Kobayashi M (2001) Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator–activated receptor-gamma. Diabetes 50:1083–1092PubMedCrossRefGoogle Scholar
  29. 29.
    Kobayashi T, Fujimori K (2012) Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and PPARγ in 3T3-L1 cells. Am J Physiol Endocrinol Metab 302:E1461–E1471PubMedCrossRefGoogle Scholar
  30. 30.
    Goto T, Takahashi N, Kato S, Egawa K, Ebisu S, Moriyama T, Fushiki T, Kawada T (2005) Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes. Biochem Biophys Res Commun 337:440–445PubMedCrossRefGoogle Scholar
  31. 31.
    Stephens JM, Pekala PH (1991) Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J Biol Chem 266:21839–21845PubMedGoogle Scholar
  32. 32.
    Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Whali W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator- activated receptors alpha and gamma. Proc Natl Acad Sci USA 94:4318–4323PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Sheu SH, Kaya T, Waxman DJ, Vajda S (2005) Exploring the binding site structure of the PPAR gamma ligand-binding domain by computational solvent mapping. Biochemistry (Mosc) 44:1193–1209CrossRefGoogle Scholar
  34. 34.
    Medina-Gomez G, Gray SL, Yetukuri L, Shimomura K, Virtue S, Campbell M, Curtis RK, Jimenez-Linan M, Blount M, Yeo GSH, Lopez M, Seppänen-Laakso T, Ashcroft FM, Orešič M, Vidal-Puig A (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 3:e64PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156PubMedCrossRefGoogle Scholar
  36. 36.
    Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, Therond P, Hainque B, Riou JP, Laville M, Vidal H (2002) Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γ. Obes Res 10:518–525PubMedCrossRefGoogle Scholar
  37. 37.
    Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 521:1655–1663CrossRefGoogle Scholar
  38. 38.
    Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451PubMedCrossRefGoogle Scholar
  39. 39.
    Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279:12152–12162PubMedCrossRefGoogle Scholar
  40. 40.
    Tonelli J, Li W, Kishore P, Pajvani UB, Kwon E, Weaver C, Scherer PE, Hawkins M (2004) Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes 53:1621–1629PubMedCrossRefGoogle Scholar
  41. 41.
    Zapata-Bustos R, Alonso-Castro ÁJ, Gómez-Sánchez M, Salazar-Olivo LA (2014) Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3 K-independent pathway. J Ethnopharmacol 152:546–552PubMedCrossRefGoogle Scholar
  42. 42.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948PubMedCrossRefGoogle Scholar
  44. 44.
    Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B (2000) Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett 471:34–38PubMedCrossRefGoogle Scholar
  45. 45.
    Kozak KR, Gupta RA, Moody JS, Ji C, Boeglin WE, DuBois RN, Brash AR, Marnett LJ (2002) 15-Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 277:23278–23286PubMedCrossRefGoogle Scholar
  46. 46.
    Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA 102:2340–2345PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2014

Authors and Affiliations

  • Haruya Takahashi
    • 1
  • Hideyuki Hara
    • 1
  • Tsuyoshi Goto
    • 1
    • 2
  • Kosuke Kamakari
    • 1
  • Nomura Wataru
    • 1
  • Shinsuke Mohri
    • 1
  • Nobuyuki Takahashi
    • 1
    • 2
  • Hideyuki Suzuki
    • 3
  • Daisuke Shibata
    • 3
  • Teruo Kawada
    • 1
    • 2
  1. 1.Laboratory of Molecular Functions of Food, Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityUjiJapan
  2. 2.Research Unit for Physiological ChemistryKyoto UniversityKyotoJapan
  3. 3.Kazusa DNA Research InstituteKisarazuJapan

Personalised recommendations