Skip to main content
Log in

Single Nucleotide Polymorphism Scanning and Expression of the Pig PPARGC1A Gene in Different Breeds

  • Original Article
  • Published:
Lipids

Abstract

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) is a candidate gene for lean meat production because it plays a key role in lipid metabolism. In this study, SNPs within the porcine PPARGC1A gene were investigated using PCR-sequencing and PCR-RFLP. Quantitative real-time PCR and Western blot were then used to analyze mRNA and protein expression in longissimus dorsi muscle (LM), liver, and backfat tissues of Dianna small-ear pigs (DSP, n = 6), Tibetan pigs (TP, n = 6), and large white pigs (LW, n = 6). Five novel SNPs (g.−1269A>G in the 5′-upstream regulatory region; g.190C>T, g.218C>A and g.234C>A in exon 8; and g.20C>T in intron 10) and three previously identified SNPs (g.417A>T in exon 8; g.56C>A in exon 9; and g.34G>A in intron 9) were found. Of these, only two, g.−1269A>G and g.234C>A, had three different genotypes in the three breeds (DSP, n = 63; TP, n = 51; and LW, n = 52). Expression was highest in LM, modest in the liver, and minimal in backfat. In LM tissue, LW had higher mRNA and protein levels than DSP and TP (P < 0.05), and there was a negative correlation between gene expression and intramuscular fat (IMF) content. LW had numerically higher expression in liver and backfat tissues than DSP and TP, and the differences in protein levels were significant (P < 0.05 in liver, P < 0.01 in backfat). In conclusion, PPARGC1A may play a key role in down-regulating lipid deposition, and the SNPs with differential genotype distribution among the three pig breeds may be related to gene expression and fat deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IMF:

Intramuscular fat

SNP:

Single nucleotide polymorphisms

PCR-RFLP:

PCR-restriction fragment length polymorphism

LM:

Longissimus dorsi muscle

DSP:

Dianna small-ear pig

LW:

Large white pig

TP:

Tibetan pigs

QTL:

Quantitative trait loci

eECL:

Enhanced electrochemiluminescence

References

  1. De Vol DL, Mc Keith FK, Bechtel PJ, Novakofski J, Shanks RD, Carr TR (1988) Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J Anim Sci 66:385–395

    Google Scholar 

  2. Wood JD, Enser M, Moncrieff CB, Kempster AJ (1988) Effects of carcass fatness and sex on the composition and quality of pig meat. In: Proc. 34th International Congress of Meat Science and Technology, Brisbane, Australia p 562-564

  3. Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, Spurlock M, Novakofski J, Fernyhough ME, Bergen WG (2009) Board sponsored invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 87:1218–1246

    Article  PubMed  CAS  Google Scholar 

  4. Fiedler I, Nurnberg K, Hardge T, Nurnberg G, Ender K (2003) Phenotypic variations of muscle fibre and intramuscular fat traits in Longissimus muscle of F2 population DurocxBerlin Miniature Pig and relationships to meat quality. Meat Sci 63:131–139

    Article  PubMed  Google Scholar 

  5. Maltin C, Balcerzak D, Tilley R, Delday M (2003) Determinants of meat quality: tenderness. Proc Nutr Soc 62:337–347

    Article  PubMed  Google Scholar 

  6. Cameron ND, Nute GR, Brown SN, Enser M, Wood JD (1999) Meat quality of large white pig genotypes selected for components of efficient lean growth rate. Anim Sci 68:115–127

    Google Scholar 

  7. Lonergan SM, Huff-Lonergan E, Rowe LJ, Kuhlers DL, Jungst SB (2001) Selection for lean growth efficiency in Duroc pigs influences pork quality. J Anim Sci 79:2075–2085

    PubMed  CAS  Google Scholar 

  8. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  PubMed  CAS  Google Scholar 

  9. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  10. Darko K, Adesh K, Anastasia K (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20(7):2411–2422

    Article  Google Scholar 

  11. Larrouy D, Vidal H, Andreelli F, Laville M, Langin D (1999) Cloning and mRNA tissue distribution of human PPARγ coactivator-1. Int J Obes Relat Metab Disord 23:1327–1332

    Article  PubMed  CAS  Google Scholar 

  12. Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, Patsch W (2002) Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 277:16750–16757

    Article  PubMed  CAS  Google Scholar 

  13. Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivator-1 (PGC1). Public Health Nutr 10:1132–1137

    Article  PubMed  Google Scholar 

  14. Spiegelman BM, Puigserver P, Wu Z (2000) Regulation of adipogenesis and energy balance by PPARγ and PGC-1. Int J Obes Relat Metab Disord 24:S8–S10

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, Mattheeuws M, Van Zeveren A, Peelman LJ (2006) Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A) coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112:106–113

    Article  PubMed  CAS  Google Scholar 

  16. Stachowiak M, Szydlowski M, Cieslak J, Switonski M (2007) SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12(2):231–239

    Article  PubMed  CAS  Google Scholar 

  17. Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ (2006) Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  18. Erkens T, Vandesompele J, Van Zeveren A, Peelman LJ (2009) Correlation between porcine PPARGC1A mRNA expression and its downstream target genes in backfat and longissimus dorsi muscle. J Appl Genet 50(4):361–369

    Article  PubMed  CAS  Google Scholar 

  19. Erkens T, Rohrer GA, Van Zeveren A, Peelman LJ (2009) SNP detection in the porcine PPARGC1A promoter region and 3′UTR, and an association analysis in a Landrace–Duroc–Yorkshire population. Czech J Anim Sci 54(9):408–416

    CAS  Google Scholar 

  20. Liu R, Li JL, Lv XB (2011) Association of PGC-1α gene with intramuscular fat content and muscle fiber traits and gene expression in Tibetan pigs. J Anim Vet Adv 10(17):2301–2304

    Article  CAS  Google Scholar 

  21. Jiang AA, Li MZ, Zhang K, Gu YR, Li XW (2011) Expression changes of PPARGC1A during the development of lean and obese pigs. J Anim Vet Adv 10(5):597–600

    Article  CAS  Google Scholar 

  22. Cheng P (1984) Livestock breeds of China-animal production and health paper, vol 46. FAO, Rome, p 217

    Google Scholar 

  23. Gong JJ, He ZP, Li ZQe, Lv XB, Ying SC, Chen XH (2007) Investigation on fattening and carcass traits in Tibetan pig and its combinations. Southwest China J Agri Sci (Chinese Article) 20:1109–1112

    Google Scholar 

  24. Pan PW, Zhao SH, Yu M, Xiong TA, Li K (2003) Identification of differentially expressed genes in the Longissimus dorsi tissue between Duroc and Erhualian pigs by mRNA differential display. Asian-Austr J Anim Sci 16:1066–1070

    CAS  Google Scholar 

  25. Plastow GS, Carrión D, Gil M et al (2005) Quality pork genes and meat production. Meat Sci 70:409–421

    Article  PubMed  CAS  Google Scholar 

  26. Soxhlet F (1879) Die gewichtsanalytische Bestimmung des Milchfettes. Dingler’s Polytechnisches J 232:461–465

    Google Scholar 

  27. Tyra M, Żak G (2010) Characteristics of the Polish breeding population of pigs in terms of intramuscular fat (IMF) content of m. longissimus dorsi. Ann Anim Sci 10(3):241–248

    Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Li Q, Tao Z, Shi L, Ban D, Zhang B, Yang Y, Zhang H, Wu C (2012) Expression and genome polymorphism of ACSL1 gene in different pig breeds. Mol Biol Rep 39(9):8787–8792

    Article  PubMed  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  31. Bidanel JP, Milan D, Iannuccelli N et al (2001) Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol 33(289):309

    Google Scholar 

  32. Bidanel JP, Rothschild M (2002) Current status of quantitative trait locus mapping in pigs. Pig News Inform 23(39N):54N

    Google Scholar 

  33. Knutti D, Kralli A (2001) PGC-1 versatile coactivator. Trends Endocrin Metab 12(8):360–365

    Article  CAS  Google Scholar 

  34. Rohrer GA, Thallman RM, Shackelford S, Wheeler T, Koohmaraie M (2006) A genome scan for loci affecting pork quality in a Duroc–Landrace F2 population. Anim Genet 37:17–27

    Article  PubMed  CAS  Google Scholar 

  35. Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32:249–252

    Article  Google Scholar 

  36. Overdier DG, Ye H, Peterson RS, Clevidence DE, Costa RH (1997) The winged helix transcriptional activator HFH-3 is expressed in the distal tubules of embryonic and adult mouse kidney. J Biol Chem 272(21):13725–13730

    Article  PubMed  CAS  Google Scholar 

  37. Kim JM, Lee KT, Lim KS, Park EW, Lee YS, Hong KC (2010) Effects of p. C430S polymorphism in the PPARGC1A gene on muscle fibre type composition and meat quality in Yorkshire pigs. Anim Genet 41(6):642–645

    Article  PubMed  CAS  Google Scholar 

  38. Gandolfi G, Cinar MU, Ponsuksili S, Wimmers K, Tesfaye D, Looft C, Jüngst H, Tholen E, Phatsara C, Schellander K, Davoli R (2011) Association of PPARGC1A and CAPNS1 gene polymorphisms and expression with meat quality traits in pigs. Meat Sci 89(4):478–485

    Article  PubMed  CAS  Google Scholar 

  39. Kim JM, Lim KS, Lee EA, Lee KT, Kim TH, Ryu YC, Hong KC (2012) Polymorphisms of the 5′ regulatory region of the porcine PPARGC1A gene and the effects on muscle fiber characteristics and meat quality. Mol Biol Rep 39(4):3933–3942

    Article  PubMed  CAS  Google Scholar 

  40. Lee JS, Kim JM, Hong JS, Lim KS, Hong KC, Lee YS (2012) Effects of polymorphisms in the 3′ untranslated region of the porcine PPARGC1A gene on muscle fiber characteristics and meat quality traits. Mol Biol Rep 39(4):3943–3950

    Article  PubMed  CAS  Google Scholar 

  41. Zhao RQ, Yang XJ, Xu QF, Wei XH, Xia D, Chen J (2004) Expression of GHR and PGC-1α in association with changes of MyHC isoform types in longissimus muscle of Erhualian and Large White pigs (Sus scrofa) during postnatal growth. Anim Sci 79:203–211

    CAS  Google Scholar 

  42. Kunej T, Wu XL, Berlic TM, Michal JJ, Jiang Z, Dovc P (2005) Frequency distribution of a Cys430Ser polymorphism in peroxisome proliferator-activated receptor-γ coactivator-1 (PPARGC1A) gene sequence in Chinese and Western pig breeds. J Anim Breed Genet 122:7–11

    Article  PubMed  CAS  Google Scholar 

  43. Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP (2005) PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25:10684–10694

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26:1913–1923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Beeson CC, Beeson GC, Buff H, Eldridge J, Zhang A, Seth A, Demcheva M, Vournakis JN, Muise-Helmericks RC (2012) Integrin-dependent Akt1 activation regulates PGC-1 expression and fatty acid oxidation. J Vasc Res 49(2):89–100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zhang Y, Ma K, Sadana P, Chowdhury F, Gaillard S, Wang F, McDonnell DP, Unterman TG, Elam MB, Park EA (2006) Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J Biol Chem 281:39897–39906

    Article  PubMed  CAS  Google Scholar 

  47. Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, Cook GA, Park EA (2010) Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol 315:159–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6(3):208–216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Major Special Project on New Varieties Cultivation for Transgenic Organisms (2013ZX08009-003-006), the National Natural Science Foundation of China (U1036604) and Chinese Universities Scientific Fund (2013QT008). We also thank the Yunnan Agricultural University and Tibet Agricultural and Animal Sciences College for help in collecting the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, Z., Zhang, B. et al. Single Nucleotide Polymorphism Scanning and Expression of the Pig PPARGC1A Gene in Different Breeds. Lipids 49, 1047–1055 (2014). https://doi.org/10.1007/s11745-014-3928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3928-1

Keywords

Navigation