Skip to main content
Log in

Palmitic Acid and Oleic Acid Differentially Regulate Choline Transporter-Like 1 Levels and Glycerolipid Metabolism in Skeletal Muscle Cells

  • Original Article
  • Published:
Lipids

Abstract

Choline is an essential nutrient required for the biosynthesis of membrane lipid phosphatidylcholine (PtdCho). Here we elucidate the mechanism of how palmitic acid (PAM) and oleic acid (OLA) regulate choline transporter-like protein 1 (CTL1/SLC44A1) function. We evaluated the mechanism of extracellular and intracellular transport of choline, and their contribution to PtdCho and other glycerolipid-diacylglycerol (DAG) and triacylglycerol (TAG) homeostasis in differentiated skeletal muscle cells. PAM reduces total and plasma membrane CTL1/SLC44A1 protein by lysosomal degradation, and limits the choline uptake while increasing DAG and TAG synthesis. OLA maintains total and plasma membrane CTL1/SLC44A1, but increases PtdCho synthesis more than PAM. OLA does not increase the rate of DAG synthesis, but does increase TAG content. Thus, the CTL1/SLC44A1 presence at the plasma membrane regulates choline requirements in accordance with the type of fatty acid. The increased PtdCho and TAG turnover by OLA stimulates cell growth and offers a specific protection mechanism from the excess of intracellular DAG and autophagy. This protection was present after OLA treatments, but not after PAM treatments. The mitochondrial choline uptake was reduced by both FA; however, the regulation is complex and guided not only by the presence of the mitochondrial CTL1/SLC44A1 protein but also by the membrane potential and general mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CTL1/SLC44A1:

Choline transporter-like protein 1

Ctrl:

Control

DAG:

Diacylglycerol

FA:

Fatty acid(s)

MM:

Mitochondrial membrane

OLA:

Oleic acid

PAM:

Palmitic acid

PM:

Plasma membrane

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdIns:

Phosphatidylinositol

PtdSer:

Phosphatidylserine

TAG:

Triacylglycerol

References

  1. Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med (Maywood) 231(5):490–504

    CAS  Google Scholar 

  2. Yuan Z, Wagner L, Poloumienko A, Bakovic M (2004) Identification and expression of a mouse muscle-specific CTL1 gene. Gene 341:305–312

    Article  CAS  PubMed  Google Scholar 

  3. Michel V, Bakovic M (2012) The ubiquitous choline transporter SLC44A1. Cent Nerv Syst Agents Med Chem 12(2):70–81

    Article  CAS  PubMed  Google Scholar 

  4. Yuan Z, Tie A, Tarnopolsky M, Bakovic M (2006) Genomic organization, promoter activity, and expression of the human choline transporter-like protein 1. Physiol Genomics 26(1):76–90

    Article  CAS  PubMed  Google Scholar 

  5. O’Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM (2000) An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc Natl Acad Sci USA 97(4):1835–1840

    Article  PubMed Central  PubMed  Google Scholar 

  6. Michel V, Bakovic M (2009) The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J 23(8):2749–2758

    Article  CAS  PubMed  Google Scholar 

  7. Fullerton MD, Wagner L, Yuan Z, Bakovic M (2006) Impaired trafficking of choline transporter-like protein-1 at plasma membrane and inhibition of choline transport in THP-1 monocyte-derived macrophages. Am J Physiol Cell Physiol 290(4):C1230–C1238

    Article  CAS  PubMed  Google Scholar 

  8. Machova E, O’Regan S, Newcombe J, Meunier FM, Prentice J, Dove R, Lisa V, Dolezal V (2009) Detection of choline transporter-like 1 protein CTL1 in neuroblastoma x glioma cells and in the CNS, and its role in choline uptake. J Neurochem 110(4):1297–1309

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura T, Fujiwara R, Ishiguro N, Oyabu M, Nakanishi T, Shirasaka Y, Maeda T, Tamai I (2010) Involvement of choline transporter-like proteins, CTL1 and CTL2, in glucocorticoid-induced acceleration of phosphatidylcholine synthesis via increased choline uptake. Biol Pharm Bull 33(4):691–696

    Article  CAS  PubMed  Google Scholar 

  10. Ishiguro N, Oyabu M, Sato T, Maeda T, Minami H, Tamai I (2008) Decreased biosynthesis of lung surfactant constituent phosphatidylcholine due to inhibition of choline transporter by gefitinib in lung alveolar cells. Pharm Res 25(2):417–427

    Article  CAS  PubMed  Google Scholar 

  11. Uchida Y, Inazu M, Takeda H, Yamada T, Tajima H, Matsumiya T (2009) Expression and functional characterization of choline transporter in human keratinocytes. J Pharmacol Sci 109(1):102–109

    Article  CAS  PubMed  Google Scholar 

  12. Michel V, Singh RK, Bakovic M (2011) The impact of choline availability on muscle lipid metabolism. Food Funct 2(1):53–62

    Article  CAS  PubMed  Google Scholar 

  13. Tvrzicka E, Kremmyda LS, Stankova B, Zak A (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease—a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(2):117–130

    Article  CAS  PubMed  Google Scholar 

  14. Hu W, Bielawski J, Samad F, Merrill AH Jr, Cowart LA (2009) Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J Lipid Res 50(9):1852–1862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Taube A, Eckardt K, Eckel J (2009) Role of lipid-derived mediators in skeletal muscle insulin resistance. Am J Physiol Endocrinol Metab 297(5):E1004–E1012

    Article  CAS  PubMed  Google Scholar 

  16. Yang C, Aye CC, Li X, Diaz Ramos A, Zorzano A, Mora S (2012) Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep 32(5):465–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hirabara SM, Curi R, Maechler P (2010) Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol 222(1):187–194

    Article  CAS  PubMed  Google Scholar 

  18. Henique C, Mansouri A, Fumey G, Lenoir V, Girard J, Bouillaud F, Prip-Buus C, Cohen I (2010) Increased mitochondrial fatty acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J Biol Chem 285(47):36818–36827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299(6):E1096–E1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Michel VH (2010) Expression, subcellular localization and function of the solute carrier 44A1, chapter 3. Library and Archives Canada, Ottawa

    Google Scholar 

  21. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401(2):318–320

    Article  CAS  PubMed  Google Scholar 

  22. Gilda JE, Gomes AV (2013) Stain-Free total protein staining is a superior loading control to beta-actin for Western blots. Anal Biochem 440(2):186–188

    Article  CAS  PubMed  Google Scholar 

  23. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  24. Graeve M, Janssen D (2009) Improved separation and quantification of neutral and polar lipid classes by HPLC-ELSD using a monolithic silica phase: application to exceptional marine lipids. J Chromatogr B Anal Technol Biomed Life Sci 877(20–21):1815–1819

    Article  CAS  Google Scholar 

  25. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  26. Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419(2):101–109

    Article  CAS  PubMed  Google Scholar 

  27. Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipemia. Ann N Y Acad Sci 131(1):447–458

    Article  CAS  PubMed  Google Scholar 

  28. Coll T, Eyre E, Rodriguez-Calvo R, Palomer X, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M (2008) Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem 283(17):11107–11116

    Article  CAS  PubMed  Google Scholar 

  29. Jacobs RL, Zhao Y, Koonen DP, Sletten T, Su B, Lingrell S, Cao G, Peake DA, Kuo MS, Proctor SD, Kennedy BP, Dyck JR, Vance DE (2010) Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J Biol Chem 285(29):22403–22413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yao ZM, Vance DE (1990) Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem Cell Biol 68(2):552–558

    Article  CAS  PubMed  Google Scholar 

  31. Baburina I, Jackowski S (1999) Cellular responses to excess phospholipid. J Biol Chem 274(14):9400–9408

    Article  CAS  PubMed  Google Scholar 

  32. Komiya K, Uchida T, Ueno T, Koike M, Abe H, Hirose T, Kawamori R, Uchiyama Y, Kominami E, Fujitani Y, Watada H (2010) Free fatty acids stimulate autophagy in pancreatic beta-cells via JNK pathway. Biochem Biophys Res Commun 401(4):561–567

    Article  CAS  PubMed  Google Scholar 

  33. Tan SH, Shui G, Zhou J, Li JJ, Bay BH, Wenk MR, Shen HM (2012) Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem 287(18):14364–14376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Choi SE, Lee SM, Lee YJ, Li LJ, Lee SJ, Lee JH, Kim Y, Jun HS, Lee KW, Kang Y (2009) Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology 150(1):126–134

    Article  CAS  PubMed  Google Scholar 

  35. Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

    Article  PubMed Central  PubMed  Google Scholar 

  36. Boslem E, MacIntosh G, Preston AM, Bartley C, Busch AK, Fuller M, Laybutt DR, Meikle PJ, Biden TJ (2011) A lipidomic screen of palmitate-treated MIN6 beta-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J 435(1):267–276

    Article  CAS  PubMed  Google Scholar 

  37. Jin JK, Kim NH, Lee YJ, Kim YS, Choi EK, Kozlowski PB, Park MH, Kim HS, Min do S (2006) Phospholipase D1 is up-regulated in the mitochondrial fraction from the brains of Alzheimer’s disease patients. Neurosci Lett 407(3):263–267

    Article  CAS  PubMed  Google Scholar 

  38. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J Biol Chem 275(44):34534–34540

    Article  CAS  PubMed  Google Scholar 

  39. O’Donoghue N, Sweeney T, Donagh R, Clarke KJ, Porter RK (2009) Control of choline oxidation in rat kidney mitochondria. Biochim Biophys Acta 1787(9):1135–1139

    Article  PubMed  Google Scholar 

  40. Yabuki M, Inazu M, Yamada T, Tajima H, Matsumiya T (2009) Molecular and functional characterization of choline transporter in rat renal tubule epithelial NRK-52E cells. Arch Biochem Biophys 485(1):88–96

    Article  CAS  PubMed  Google Scholar 

  41. Hirabara SM, Silveira LR, Alberici LC, Leandro CV, Lambertucci RH, Polimeno GC, Cury Boaventura MF, Procopio J, Vercesi AE, Curi R (2006) Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle. Biochim Biophys Acta 1757(1):57–66

    Article  CAS  PubMed  Google Scholar 

  42. Tonkonogi M, Krook A, Walsh B, Sahlin K (2000) Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect? Biochem J 351(Pt 3):805–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Porter RK, Scott JM, Brand MD (1992) Choline transport into rat liver mitochondria. Biochem Soc Trans 20(3):248S

    CAS  PubMed  Google Scholar 

  44. van der Veen JN, Lingrell S, da Silva RP, Jacobs RL, Vance DE (2014) The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice. Diabetes [Epub ahead of print]

  45. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, Vance DE (2006) The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3(5):321–331

    Article  CAS  PubMed  Google Scholar 

  46. Al-Makdissy N, Younsi M, Pierre S, Ziegler O, Donner M (2003) Sphingomyelin/cholesterol ratio: an important determinant of glucose transport mediated by GLUT-1 in 3T3-L1 preadipocytes. Cell Signal 15(11):1019–1030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by an operating grant from the National Sciences and Engineering Research Council of Canada (to M. Bakovic). We acknowledge Audric Moses and the Women and Children’s Health Research Institute at the University of Alberta for assisting with the lipid quantification.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laila Cigana Schenkel.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenkel, L.C., Bakovic, M. Palmitic Acid and Oleic Acid Differentially Regulate Choline Transporter-Like 1 Levels and Glycerolipid Metabolism in Skeletal Muscle Cells. Lipids 49, 731–744 (2014). https://doi.org/10.1007/s11745-014-3925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3925-4

Keywords

Navigation