Skip to main content
Log in

A MALDI MS Investigation of the Lysophosphatidylcholine/Phosphatidylcholine Ratio in Human Spermatozoa and Erythrocytes as a Useful Fertility Marker

  • Original Article
  • Published:
Lipids

Abstract

The human spermatozoa membrane is characterized by a unique fatty acyl composition with significant amounts of highly unsaturated fatty acids, particularly docosahexaenoic acid (22:6), whereby phosphatidylcholine (PtdCho) (16:0/22:6) is the most abundant glycerophospholipid. The large amount of highly unsaturated fatty acyl residues is crucial for the fluidity of the membrane and, therefore, the successful fertilization process. Consequently, however, the spermatozoa are very sensitive to reactive oxygen species (ROS) that are generated under conditions of “oxidative stress” and key players in many pathological conditions. Lipid oxidation of the sperm membrane is accompanied by the loss of the oxidatively modified unsaturated residue (normally in the sn-2 position) and the generation of saturated lysophosphatidylcholine (LysoPtdCho). Although other lysolipids are also generated, LysoPtdCho is the “marker” lipid of choice due to the high abundance of PtdCho. In particular, obesity (body mass index >30 kg/m2) is characterized by increased ROS generation and negatively affects the reproductive potential. We will show here that the LysoPtdCho/PtdCho ratio can be easily determined by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The data found do correlate with clinical markers of sperm quality. A very interesting aspect is that the LysoPtdCho/PtdCho ratios determined in the spermatozoa extracts correlate with the LysoPtdCho/PtdCho values determined in the organic extracts of erythrocytes. Thus, there is no absolute need for a sperm investigation, but an estimation of the fertilizing ability of the corresponding male could be also made directly from the blood which is more readily available than the spermatozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mann T, Lutwak-Mann C (1981) Male reproductive function and semen. Springer-Verlag, Berlin

    Book  Google Scholar 

  2. Aitken RJ (1999) The Amoroso lecture. The human spermatozoon—a cell in crisis. Reprod Fertil 115:1–7

    Article  CAS  Google Scholar 

  3. Schiller J, Arnhold J, Glander HJ, Arnold K (2000) Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy—effects of freezing and thawing. Chem Phys Lipids 106:145–156

    Article  CAS  PubMed  Google Scholar 

  4. Agarwal A, Nallella KP, Allamaneni SS, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627

    Article  CAS  PubMed  Google Scholar 

  5. Saleh RA, Agarwal A (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23:737–752

    CAS  PubMed  Google Scholar 

  6. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C (1997) Reactive oxygen species and sperm physiology. Rev Reprod 2:48–54

    Article  PubMed  Google Scholar 

  7. Fuchs B, Müller K, Paasch U, Schiller J (2012) Lysophospholipids: potential markers of diseases and infertility. Mini Rev Med Chem 12:74–86

    Article  CAS  PubMed  Google Scholar 

  8. Jones R, Mann T, Sherins R (1979) Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril 31:531–537

    CAS  PubMed  Google Scholar 

  9. Cerolini S, Maldjian A, Surai P, Noble R (2000) Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim Reprod Sci 58:99–111

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez JG, Storey BT (1992) Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl 13:232–241

    CAS  PubMed  Google Scholar 

  11. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  CAS  PubMed  Google Scholar 

  12. Sekas G, Patton GM, Lincoln EC, Robins SJ (1985) Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. J Lab Clin Med 105:190–194

    CAS  PubMed  Google Scholar 

  13. van Deenen LLM, de Haas GH (1963) The substrate specificity of phospholipase A. Biochim Biophys Acta 70:538–553

    Article  CAS  Google Scholar 

  14. Kunze H, Natias N, Wurl M (1974) Phospholipase in human seminal plasma. Biochim Biophys Acta 348:35–44

    Article  CAS  PubMed  Google Scholar 

  15. Takayama K, Hara S, Kudo J, Inoue K (1991) Detection of 14 kDa group II phospholipase A2 in human seminal plasma. Biochem Biophys Res Commun 178:1505–1511

    Article  CAS  PubMed  Google Scholar 

  16. Fleming AD, Yanagimachi R (1984) Evidence suggesting the importance of fatty acids and the fatty acid moieties of sperm membrane phospholipids in the acrosome reaction of guinea pig spermatozoa. J Exp Zool 229:485–489

    Article  CAS  PubMed  Google Scholar 

  17. Iwase M, Sonoki K, Sasaki N, Ohdo S, Higuchi S, Hattori H, Iida M (2008) Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus: relation with lipoprotein associated phospholipase A2 and effects of simvastatin treatment. Atherosclerosis 196:931–936

    Article  CAS  PubMed  Google Scholar 

  18. Okita M, Gaudette DC, Mills GB, Holub BJ (1997) Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine (lysoPC) in ovarian cancer patients. Int J Cancer 71:31–34

    Article  CAS  PubMed  Google Scholar 

  19. Drobnik W, Liebisch G, Audebert FX, Fröhlich D, Glück T, Vogel P, Rothe G, Schmitz G (2003) Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 44:754–761

    Article  CAS  PubMed  Google Scholar 

  20. Zhang B, Fan P, Shimoji E, Itabe H, Miura S, Uehara Y, Matsunaga A, Saku K (2006) Modulating effects of cholesterol feeding and simvastatin treatment on platelet activating factor acetylhydrolase activity and lysophosphatidylcholine concentration. Atherosclerosis 186:291–301

    Article  CAS  PubMed  Google Scholar 

  21. Murphy AA, Santanam N, Morales AJ, Parthasarathy S (1998) Lysophosphatidyl choline, a chemotactic factor for monocytes/T-lymphocytes is elevated in endometriosis. Clin Endocrinol Metab 83:2110–2113

    Article  CAS  Google Scholar 

  22. Fuchs B, Schiller J, Wagner U, Häntzschel H, Arnold K (2005) The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by 31P NMR and MALDI-TOF MS. Clin Biochem 38:925–933

    Article  CAS  PubMed  Google Scholar 

  23. Pyttel S, Zschörnig K, Nimptsch A, Paasch U, Schiller J (2012) Enhanced lysophosphatidyl-choline and sphingomyelin contents are characteristic of spermatozoa from obese men—a MALDI mass spectrometric study. Chem Phys Lipids 165:861–865

    Article  CAS  PubMed  Google Scholar 

  24. Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 14:243–258

    Article  CAS  PubMed  Google Scholar 

  25. Junqueira VB, Barros SB, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP (2004) Aging and oxidative stress. Mol Aspects Med 25:5–16

    Article  CAS  PubMed  Google Scholar 

  26. Fujita B, Strodthoff D, Fritzenwanger M, Pfeil A, Ferrari M, Goebel B, Figulla HR, Gerdes N, Jung C (2013) Altered red blood cell distribution width in overweight adolescents and its association with markers of inflammation. Pediatr Obes 8:385–391

    Article  CAS  PubMed  Google Scholar 

  27. Younsi M, Quilliot D, Al-Makdissy N, Delbachian I, Drouin P, Donner M, Ziegler O (2002) Erythrocyte membrane phospholipid composition is related to hyperinsulinemia in obese nondiabetic women: effects of weight loss. Metabolism 51:1261–1268

    Article  CAS  PubMed  Google Scholar 

  28. Hayase N, Satomi M, Hara A, Shimizu K, Matsubara K (2003) Protective effects of quinaprilat and trandolaprilat, active metabolites of quinapril and trandolapril, on hemolysis induced by lysophosphatidylcholine in human erythrocytes. Biol Pharm Bull 26:712–716

    Article  CAS  PubMed  Google Scholar 

  29. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can Biochem Physiol 3:911–917

    Article  Google Scholar 

  30. Schiller J, Süß R, Fuchs B, Müller M, Petkovic M, Zschörnig O, Waschipky H (2007) The suitability of different DHB isomers as matrices fort he MALDI-TOF MS analysis of phospholipids: which isomer for what purpose. Eur Biophys J 36:517–527

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs B, Süss R, Schiller J (2010) An update of MALDI TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475

    Article  CAS  PubMed  Google Scholar 

  32. Schiller J, Süss R, Petković M, Hilbert N, Müller M, Zschörnig O, Arnhold J, Arnold K (2001) CsCl as an auxiliary reagent for the analysis of phosphatidylcholine mixtures by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry(MALDI-TOF MS). Chem Phys Lipids 113:123–131

    Article  CAS  PubMed  Google Scholar 

  33. Kort HI, Massey JB, Elsner CW, Mitchell-Leef D, Shapiro DB, Witt MA (2006) Impact of body mass index values on sperm quantity and quality. J Androl 27:450–452

    Article  PubMed  Google Scholar 

  34. Fuchs B, Schiller J (2009) Lysophospholipids: their generation, physiological role and detection. Are they important disease markers. Mini Rev Med Chem 9:368–378

    Article  CAS  PubMed  Google Scholar 

  35. Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J (2002) Formation of lysophospholipids from unsaturated phosphatidylcholines under the influence of hypochlorous acid. Biochim Biophys Acta 1572:91–100

    Article  CAS  PubMed  Google Scholar 

  36. Sohal RS, Weindruck R (1996) Oxidative stress, caloric restriction and aging. Science 273:59–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Petković M, Müller J, Müller M, Schiller J, Arnold K, Arnhold J (2002) Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for monitoring the digestion of phosphatidylcholine by pancreatic phospholipase A2. Anal Biochem 308:61–70

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Council (DFG Schi 476/12-1, DFG NI 1396/3-1, SFB 1052/B6 and DFG PA 834/9-1).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Nimptsch.

Additional information

A. Nimptsch and S. Pyttel contributed equally to this work.

About this article

Cite this article

Nimptsch, A., Pyttel, S., Paasch, U. et al. A MALDI MS Investigation of the Lysophosphatidylcholine/Phosphatidylcholine Ratio in Human Spermatozoa and Erythrocytes as a Useful Fertility Marker. Lipids 49, 287–293 (2014). https://doi.org/10.1007/s11745-013-3870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3870-7

Keywords

Navigation