Skip to main content
Log in

Renal Cyclooxygenase Products are Higher and Lipoxygenase Products are Lower in Early Disease in the pcy Mouse Model of Adolescent Nephronophthisis

  • Original Article
  • Published:
Lipids

Abstract

Nephronophthisis (NPHP) is a pediatric form of hereditary polycystic kidney disease (PKD), and is the leading cause of end stage renal disease in children. The pcy mouse is an orthologous model of human NPHP, with a mutation in the Nphp3 gene. Renal phospholipase A2, cyclooxygenase (COX) 1 and cyclic AMP are elevated in this model, suggesting that eicosanoid formation may be altered. In another type of PKD observed in the Han:SPRD-Cy rat, inhibition of eicosanoid production slows disease progression. If renal eicosanoids are similarly altered in NPHP, potential for pharmacologic intervention also may exist for this disorder. Therefore, renal fatty acids and eicosanoids were determined in pcy and normal mice at 15, 30 and 60 days of age by gas chromatography and HPLC–tandem mass spectrometry, respectively. Renal cysts in enlarged kidneys were observed in pcy mice by 15 days of age and increased over time. Renal phospholipid ARA levels were higher in pcy compared to normal mice at 15 and 30 days. Eicosanoid differences were observed starting at 30 days, when the COX products 6-keto-prostaglandin (PG) F, thromboxane B2 and PGE2 were higher in pcy compared to normal kidneys. Overall, total COX products were elevated at 30 and 60 days. In contrast, the levels of the lipoxygenase (LOX) products were not altered until 60 days of age and these were lower in pcy kidneys compared to normal. These findings suggest that altered eicosanoids play a role in NPHP, and that manipulating these levels with pharmacologic agents may have therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

COX:

Cyclooxygenase

HETE:

Hydroxyeicosatetraenoic acid

HODE:

Hydroxyoctadecadienoic acid

LOX:

Lipoxygenase

NPHP:

Nephronophthisis

PG:

Prostaglandin

PKD:

Polycystic kidney disease

TX:

Thromboxane

References

  1. Wolf MT, Hildebrandt F (2011) Nephronophthisis. Pediatr Nephrol 26:181–194. doi:10.1007/s00467-010-1585-z

    Article  PubMed  Google Scholar 

  2. Salomon R, Saunier S, Niaudet P (2009) Nephronophthisis. Pediatr Nephrol 24:2333–2344. doi:10.1007/s00467-008-0840-z

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18:1855–1871. doi:10.1681/ASN.2006121344

    Article  CAS  PubMed  Google Scholar 

  4. Omran H, Haffner K, Burth S, Fernandez C, Fargier B, Villaquiran A, Nothwang HG, Schnittger S, Lehrach H, Woo D, Brandis M, Sudbrak R, Hildebrandt F (2001) Human adolescent nephronophthisis: gene locus synteny with polycystic kidney disease in pcy mice. J Am Soc Nephrol 12:107–113

    CAS  PubMed  Google Scholar 

  5. Nagao S, Kugita M, Yoshihara D, Yamaguchi T (2012) Animal models for human polycystic kidney disease. Exp Anim 61:477–488

    Article  CAS  PubMed  Google Scholar 

  6. Aukema HM, Adolphe J, Mishra S, Jiang J, Cuozzo FP, Ogborn MR (2003) Alterations in renal cytosolic phospholipase A2 and cyclooxygenases in polycystic kidney disease. FASEB J 17:298–300. doi:10.1096/fj.02-0460fje

    CAS  PubMed  Google Scholar 

  7. Sankaran D, Bankovic-Calic N, Ogborn MR, Crow G, Aukema HM (2007) Selective COX-2 inhibition markedly slows disease progression and attenuates altered prostanoid production in Han:SPRD-Cy rats with inherited kidney disease. Am J Physiol Renal Physiol 293:F821–F830. doi:10.1152/ajprenal.00257.2006

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi T, Nagao S, Kasahara M, Takahashi H, Grantham JJ (1997) Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis 30:703–709

    Article  CAS  PubMed  Google Scholar 

  9. Hao CM, Breyer MD (2008) Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol 70:357–377. doi:10.1146/annurev.physiol.70.113006.100614

    Article  CAS  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Sankaran D, Lu J, Bankovic-Calic N, Ogborn MR, Aukema HM (2004) Modulation of renal injury in pcy mice by dietary fat containing n-3 fatty acids depends on the level and type of fat. Lipids 393:207–214

    Article  Google Scholar 

  12. Aukema HM, Lu J, Borthwick F, Proctor SD (2012) Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome. Br J Nutr 15:1–9. doi:10.1017/S0007114512004606

    Google Scholar 

  13. Deems R, Buczynski MW, Bowers-Gentry R, Harkewicz R, Dennis EA (2007) Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol 432:59–82. doi:10.1016/S0076-6879(07)32003-X

    CAS  PubMed  Google Scholar 

  14. Hall LM, Murphy RC (1998) Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids. J Am Soc Mass Spectrom 9:527–532. doi:10.1016/S1044-0305(98)00013-0

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi T, Nagao S, Takahashi H, Ye M, Grantham JJ (1995) Cyst fluid from a murine model of polycystic kidney disease stimulates fluid secretion, cyclic adenosine monophosphate accumulation, and cell proliferation by Madin-Darby canine kidney cells in vitro. Am J Kidney Dis 25:471–477

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ (2000) cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57:1460–1471. doi:10.1046/j.1523-1755.2000.00991.x

    Article  CAS  PubMed  Google Scholar 

  17. Elberg G, Elberg D, Lewis TV, Guruswamy S, Chen L, Logan CJ, Chan MD, Turman MA (2007) EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells. Am J Physiol Renal Physiol 293:F1622–F1632. doi:10.1152/ajprenal.00036.2007

    Article  CAS  PubMed  Google Scholar 

  18. Elberg D, Turman MA, Pullen N, Elberg G (2012) Prostaglandin E2 stimulates cystogenesis through EP4 receptor in IMCD-3 cells. Prostaglandins Other Lipid Mediat 98:11–16. doi:10.1016/j.prostaglandins.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  19. Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH (2004) Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 36:1187–1205. doi:10.1016/j.biocel.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  20. Diaz-Munoz MD, Osma-Garcia IC, Fresno M, Iniguez MA (2012) Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages. Biochem J 443:451–461. doi:10.1042/BJ20111052

    Article  CAS  PubMed  Google Scholar 

  21. Klein T, Shephard P, Kleinert H, Komhoff M (2007) Regulation of cyclooxygenase-2 expression by cyclic AMP. Biochim Biophys Acta 1773:1605–1618. doi:10.1016/j.bbamcr.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  22. Maldve RE, Kim Y, Muga SJ, Fischer SM (2000) Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J Lipid Res 41:873–881

    CAS  PubMed  Google Scholar 

  23. Lo CJ, Fu M, Lo FR, Cryer HG (2000) Cyclooxygenase 2 (COX-2) gene activation is regulated by cyclic adenosine monophosphate. Shock 13:41–45

    Article  CAS  PubMed  Google Scholar 

  24. Hinz B, Brune K, Pahl A (2000) Cyclooxygenase-2 expression in lipopolysaccharide-stimulated human monocytes is modulated by cyclic AMP, prostaglandin E2, and nonsteroidal anti-inflammatory drugs. Biochem Biophys Res Commun 278:790–796. doi:10.1006/bbrc2000.3885

    Article  CAS  PubMed  Google Scholar 

  25. Nusing RM, Klein T, Pfeilschifter J, Ullrich V (1996) Effect of cyclic AMP and prostaglandin E2 on the induction of nitric oxide- and prostanoid-forming pathways in cultured rat mesangial cells. Biochem J 313:617–623

    PubMed  Google Scholar 

  26. Omori S, Hida M, Fujita H, Takahashi H, Tanimura S, Kohno M, Awazu M (2006) Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol 17:1604–1614. doi:10.1681/ASN.2004090800

    Article  CAS  PubMed  Google Scholar 

  27. Melien O, Nilssen LS, Dajani OF, Sand KL, Iversen JG, Sandnes DL, Christoffersen T (2002) Ca2+-mediated activation of ERK in hepatocytes by norepinephrine and prostaglandin F: role of calmodulin and Src kinases. BMC Cell Biol 3:5

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chang MC, Chen YJ, Lee MY, Lin LD, Wang TM, Chan CP, Tsai YL, Wang CY, Lin BR, Jeng JH (2010) Prostaglandin F stimulates MEK-ERK signalling but decreases the expression of alkaline phosphatase in dental pulp cells. Int Endod J 43:461–468. doi:10.1111/j.1365-2591.2010.01699.x

    Article  CAS  PubMed  Google Scholar 

  29. Ueno T, Fujimori K (2011) Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F receptor mediated activation of MEK/ERK-CREB cascade. FEBS J 278:2901–2912. doi:10.1111/j.1742-4658.2011.08213.x

    Article  CAS  PubMed  Google Scholar 

  30. Schmitz PG, Zhang K, Dalal R (2000) Eicosapentaenoic acid suppresses PDGF-induced DNA synthesis in rat mesangial cells: involvement of thromboxane A2. Kidney Int 57:1041–1051. doi:10.1038/sj.ki.4491425

    Article  CAS  PubMed  Google Scholar 

  31. Schmitz PG, Krupa SM, Lane PH, Reddington JC, Salinas-Madrigal L (1994) Acquired essential fatty acid depletion in the remnant kidney: amelioration with U-63557A. Kidney Int 46:1184–1191

    Article  CAS  PubMed  Google Scholar 

  32. Stahl RA, Thaiss F, Wenzel U, Schoeppe W, Helmchen U (1992) A rat model of progressive chronic glomerular sclerosis: the role of thromboxane inhibition. J Am Soc Nephrol 2:1568–1577

    CAS  PubMed  Google Scholar 

  33. Xu T, Wang NS, Fu LL, Ye CY, Yu SQ, Mei CL (2012) Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep 39:7743–7753. doi:10.1007/s11033-012-1611-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Aukema HM, Yamaguchi T, Takahashi H, Philbrick D, Holub B (1992) Effects of dietary fish oil on survival and renal fatty acid composition in murine polycystic kidney disease. Nutr Res 12:1383–1392

    Article  CAS  Google Scholar 

  35. Yamaguchi T, Valli VE, Philbrick D, Holub B, Yoshida K, Takahashi H (1990) Effects of dietary supplementation with n-3 fatty acids on kidney morphology and the fatty acid composition of phospholipids and triglycerides from mice with polycystic kidney disease. Res Commun Chem Pathol Pharmacol 69:335–351

    CAS  PubMed  Google Scholar 

  36. Lu J, Bankovic-Calic N, Ogborn MR, Saboorian H, Aukema HM (2003) Detrimental effects of a high fat diet in early renal injury are ameliorated by a diet containing fish oil in Han:SPRD-cy rats. J Nutr 133:180–186

    CAS  PubMed  Google Scholar 

  37. Goossens L, Pommery N, Henichart JP (2007) COX-2/5-LOX dual acting anti-inflammatory drugs in cancer chemotherapy. Curr Top Med Chem 7:283–296

    Article  CAS  PubMed  Google Scholar 

  38. De Simone R, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G (2011) Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1,5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 54:1565–1575. doi:10.1021/jm101238d

    Article  PubMed  Google Scholar 

  39. Wisastra R, Ghizzoni M, Boltjes A, Haisma HJ, Dekker FJ (2012) Anacardic acid derived salicylates are inhibitors or activators of lipoxygenases. Bioorg Med Chem 20:5027–5032. doi:10.1016/j.bmc.2012.06.019

    Article  CAS  PubMed  Google Scholar 

  40. Komhoff M, Wang JL, Cheng HF, Langenbach R, McKanna JA, Harris RC, Breyer MD (2000) Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int 57:414–422. doi:10.1046/j.1523-1755.2000.00861.x

    CAS  PubMed  Google Scholar 

  41. Peng CY, Sankaran D, Ogborn MR, Aukema HM (2009) Dietary soy protein selectively reduces renal prostanoids and cyclooxygenases in polycystic kidney disease. Exp Biol Med (Maywood) 234:737–743. doi:10.3181/0811-RM-315

    Article  CAS  Google Scholar 

  42. Warford-Woolgar L, Peng CY, Shuhyta J, Wakefield A, Sankaran D, Ogborn M, Aukema HM (2006) Selectivity of cyclooxygenase isoform activity and prostanoid production in normal and diseased Han:SPRD-Cy rat kidneys. Am J Physiol Renal Physiol 290:F897–F904. doi:10.1152/ajprenal.00332.2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant (to HMA) from the Natural Sciences and Engineering Research Council of Canada (312062) and by a Grant-in-Aid for scientific research (22590351) to SN from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The Manitoba Institute of Child Health provided studentships to CL and AR.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold M. Aukema.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Supplementary Fig. 1 Sum of (a) COX and (b) LOX products in normal (CD1-+/+) and pcy (CD1-pcy/pcy) mice. **P < 0.01, ***P < 0.001: Significantly different from corresponding value for mice at same age. Different upper case letters indicate significant age differences (P < 0.05). Values are expressed as means ± SE, n = 6

About this article

Cite this article

Yamaguchi, T., Lysecki, C., Reid, A. et al. Renal Cyclooxygenase Products are Higher and Lipoxygenase Products are Lower in Early Disease in the pcy Mouse Model of Adolescent Nephronophthisis. Lipids 49, 39–47 (2014). https://doi.org/10.1007/s11745-013-3859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3859-2

Keywords

Navigation