, Volume 48, Issue 11, pp 1115–1134 | Cite as

Increased Lipid Synthesis and Decreased β-Oxidation in the Liver of SHR/NDmcr-cp (cp/cp) Rats, an Animal Model of Metabolic Syndrome

  • Shizuyo Tanaka
  • Tohru Yamazaki
  • Satoshi Asano
  • Atsushi Mitsumoto
  • Daisuke Kobayashi
  • Naomi Kudo
  • Yoichi Kawashima
Original Article


SHR/NDmcr-cp (cp/cp) rats (SHR/NDcp) are an animal model of metabolic syndrome. A previous study of ours revealed drastic increases in the mass of palmitic (16:0), oleic (18:1n-9), palmitoleic (16:1n-7), cis-vaccenic (18:1n-7) and 5,8,11-eicosatrienoic acids in the liver of SHR/NDcp. However, detailed information on the class of lipid accumulated and the mechanism responsible for the overproduction of the accumulated lipid in the liver was not obtained. This study aimed to characterize the class of lipid accumulated and to explore the mechanism underlying the lipid accumulation in the liver of SHR/NDcp, in comparison with SHR/NDmcr-cp (+/+) (lean hypertensive littermates of SHR/NDcp) and Wistar Kyoto rats. In the liver of SHR/NDcp, de novo synthesis of fatty acids (16:0, 18:1n-9 and 16:1n-7) and triacylglycerol (TAG) synthesis were up-regulated and fatty acid β-oxidation was down-regulated. These perturbations of lipid metabolism caused fat accumulation in hepatocytes and accumulation of TAG, which were enriched with 16:0, 18:1n-9 and 16:1n-7, in the liver of SHR/NDcp. On the other hand, no changes were found in hepatic contents of diacylglycerol and unesterified fatty acid (FFA); among FFA, there were no differences in the hepatic concentrations of unesterified 16:0 and stearic acid between SHR/NDcp and two other groups of rats. Moreover, little change was brought about in the expression of genes responsive to endoplasmic reticulum stress in the liver of SHR/NDcp. These results may reinforce the pathophysiological role of stearoyl-CoA desaturase 1 and fatty acid elongase 6 in the liver of SHR/NDcp.


Hepatic TAG accumulation MUFA De novo lipogenesis β-Oxidation SHR/NDmcr-cp (cp/cp) rat 



Acetyl-CoA carboxylase 1


ATP-citrate lyase


Long-chain acyl-CoA synthetase


Adipose triglyceride lipase


Bovine serum albumin


Comparative gene identification-58


CCAAT/enhancer binding protein homologous protein


Carbohydrate responsive element-binding protein


Carnitine palmitoyltransferase 1a


Acyl-CoA:diacylglycerol acyltransferase


Ethylenediaminetetraacetic acid


Fatty acid elongase


Endoplasmic reticulum


Fatty acid binding protein 1


Plasma membrane-associated fatty acid binding protein


Fatty acid desaturase


Fatty acid synthase


Fatty acid translocase


Fatty acid transport protein


Glycerol-3-phosphate acyltransferase


Glucose-regulated protein 78 kDa


Hematoxylin and eosin


Homeostatic model of insulin-resistance index


L-type pyruvate kinase


Long-chain acyl-CoA dehydrogenase


Liver X receptor α


Medium-chain acyl-CoA dehydrogenase


Malic enzyme 1


Metabolic syndrome


Nonalcoholic fatty liver disease


Oil Red O


Palmitoyl-CoA chain elongation


Polymerase chain reaction


Phosphoenolpyruvate carboxykinase


Peroxisome proliferator-activated receptor α


Stearoyl-CoA desaturase


Spontaneously hypertensive rats


SHR/NDmcr-cp (+/+) rats


SHR/NDmcr-cp (cp/cp) rats


Stroke-prone spontaneously hypertensive rats


Sterol regulatory element binding protein-1c


Spliced X-box binding protein 1


Thin-layer chromatography


Very long-chain acyl-CoA dehydrogenase


Wistar Kyoto rats


  1. 1.
    Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–142PubMedGoogle Scholar
  2. 2.
    Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293PubMedCrossRefGoogle Scholar
  3. 3.
    Koletsky S (1973) Obese spontaneously hypertensive rats-a model for study of atherosclerosis. Exp Mol Pathol 19:53–60PubMedCrossRefGoogle Scholar
  4. 4.
    Michaelis OE 4th, Ellwood KC, Judge JM, Schoene NW, Hansen CT (1984) Effect of dietary sucrose on the SHR/N-corpulent rat: a new model for insulin-independent diabetes. Am J Clin Nutr 39:612–618PubMedGoogle Scholar
  5. 5.
    Takaya K, Ogawa Y, Hiraoka J, Hosoda K, Yamori Y, Nakao K, Koletsky RJ (1996) Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14:130–131PubMedCrossRefGoogle Scholar
  6. 6.
    Kawai K, Sakairi T, Harada S, Shinozuka J, Ide M, Sato H, Tanaka M, Toriumi W, Kume E (2012) Diet modification and its influence on metabolic and related pathological alterations in the SHR/NDmcr-cp rat, an animal model of the metabolic syndrome. Exp Toxicol Pathol 64:333–338PubMedCrossRefGoogle Scholar
  7. 7.
    Hussein G, Nakagawa T, Goto H, Shimada Y, Matsumoto K, Sankawa U, Watanabe H (2007) Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp. Life Sci 80:522–529PubMedCrossRefGoogle Scholar
  8. 8.
    Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50:1844–1850PubMedCrossRefGoogle Scholar
  9. 9.
    Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275–E281PubMedCrossRefGoogle Scholar
  10. 10.
    Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S, Charlton MR, Gores GJ (2010) Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J Hepatol 52:586–593PubMedCrossRefGoogle Scholar
  11. 11.
    Li ZZ, Berk M, McIntyre TM, Feldstein AE (2009) Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284:5637–5644PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka S, Yagi Y, Yamazaki T, Mitsumoto A, Kobayashi D, Kudo N, Kawashima Y (2012) Characterization of fatty acid profile in the liver of SHR/NDmcr-cp (cp/cp) rats, a model of the metabolic syndrome. Biol Pharm Bull 35:184–191PubMedCrossRefGoogle Scholar
  13. 13.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  14. 14.
    Imai K, Koyama M, Kudo N, Shirahata A, Kawashima Y (1999) Increase in hepatic content of oleic acid induced by dehydroepiandrosterone in the rat. Biochem Pharmacol 58:925–933PubMedCrossRefGoogle Scholar
  15. 15.
    Yamazaki T, Wakabayashi M, Ikeda E, Tanaka S, Sakamoto T, Mitsumoto A, Kudo N, Kawashima Y (2012) Induction of 1-acylglycerophosphocholine acyltransferase genes by fibrates in the liver of rats. Biol Pharm Bull 35:1509–1515PubMedCrossRefGoogle Scholar
  16. 16.
    Zurkowski P (1964) A rapid method for cholesterol determination with a single reagent. Clin Chem 10:451–453PubMedGoogle Scholar
  17. 17.
    Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86PubMedCrossRefGoogle Scholar
  18. 18.
    Flowers MT, Groen AK, Oler AT, Keller MP, Choi Y, Schueler KL, Richards OC, Lan H, Miyazaki M, Kuipers F, Kendziorski CM, Ntambi JM, Attie AD (2006) Cholestasis and hypercholesterolemia in SCD1-deficient mice fed a low-fat, high-carbohydrate diet. J Lipid Res 47:2668–2680PubMedCrossRefGoogle Scholar
  19. 19.
    Keppler D, Decker K (1974) Glycogen: determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, Academic Press, New YorkGoogle Scholar
  20. 20.
    Özcan U, Yilmaz E, Özcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140PubMedCrossRefGoogle Scholar
  21. 21.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  22. 22.
    Nepokroeff CM, Lakshmanan MR, Porter JW (1975) Fatty acid synthase from rat liver. In: Lowenstein JM (ed) Methods in enzymology, Academic Press, New YorkGoogle Scholar
  23. 23.
    Karahashi M, Ishii F, Yamazaki T, Imai K, Mitsumoto A, Kawashima Y, Kudo N (2013) Up-regulation of stearoyl-CoA desaturase 1 increases liver MUFA content in obese Zucker but not Goto-Kakizaki rats. Lipids 48:457–467PubMedCrossRefGoogle Scholar
  24. 24.
    Tanaka T, Hosaka K, Hoshimaru M, Numa S (1979) Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur J Biochem 98:165–172PubMedCrossRefGoogle Scholar
  25. 25.
    Yamada K, Okuyama H (1978) Selectivity of diacylglycerophosphate synthesis in subcellular fractions of rat liver. Arch Biochem Biophys 190:409–420PubMedCrossRefGoogle Scholar
  26. 26.
    Bell RM, Miller Y (1976) A highly sensitive assay for microsomal diacylglycerol acyltransferase activity from isolated fat cells. Anal Biochem 71:436–443PubMedCrossRefGoogle Scholar
  27. 27.
    Sheng Z, Otani H, Brown MS, Goldstein JL (1995) Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci USA 92:935–938PubMedCrossRefGoogle Scholar
  28. 28.
    Krumdieck CL, dos Santos JE, Ho KJ (1980) A new instrument for the rapid preparation of tissue slices. Anal Biochem 104:118–123PubMedCrossRefGoogle Scholar
  29. 29.
    Iritani N, Yamashita S, Numa S (1976) Dietary control of triglyceride and phospholipid synthesis in rat liver slices. J Biochem 80:217–222PubMedGoogle Scholar
  30. 30.
    Friedman MI, Harris RB, Ji H, Ramirez I, Tordoff MG (1999) Fatty acid oxidation affects food intake by altering hepatic energy status. Am J Physiol 276:R1046–R1053PubMedGoogle Scholar
  31. 31.
    Targher G (2007) Non-alcoholic fatty liver disease, the metabolic syndrome and the risk of cardiovascular disease: the plot thickens. Diabet Med 24:1–6PubMedCrossRefGoogle Scholar
  32. 32.
    Roden M (2006) Mechanisms of disease: hepatic steatosis in type 2 diabetes–pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2:335–348PubMedCrossRefGoogle Scholar
  33. 33.
    Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care 14:115–120PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair M, Peters JM, Busik J, Olson LK, Jump DB (2006) Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 47:2028–2041PubMedCrossRefGoogle Scholar
  35. 35.
    Shimomura I, Bashmakov Y, Horton JD (1999) Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 274:30028–30032PubMedCrossRefGoogle Scholar
  36. 36.
    Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122:2176–2194PubMedCrossRefGoogle Scholar
  37. 37.
    Elam MB, Wilcox HG, Cagen LM, Deng X, Raghow R, Kumar P, Heimberg M, Russell JC (2001) Increased hepatic VLDL secretion, lipogenesis, and SREBP-1 expression in the corpulent JCR:lA-cp rat. J Lipid Res 42:2039–2048PubMedGoogle Scholar
  38. 38.
    Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL (2000) Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6:77–86PubMedGoogle Scholar
  39. 39.
    Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417PubMedCrossRefGoogle Scholar
  40. 40.
    Lewis GF (1997) Fatty acid regulation of very low density lipoprotein production. Curr Opin Lipidol 8:146–153PubMedCrossRefGoogle Scholar
  41. 41.
    Delgado TC, Pinheiro D, Caldeira M, Castro MM, Geraldes CF, López-Larrubia P, Cerdán S, Jones JG (2009) Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed 22:310–317PubMedCrossRefGoogle Scholar
  42. 42.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351PubMedGoogle Scholar
  43. 43.
    Jamdar SC, Cao WF (1995) Triacylglycerol biosynthetic enzymes in lean and obese Zucker rats. Biochim Biophys Acta 1255:237–243PubMedCrossRefGoogle Scholar
  44. 44.
    Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506PubMedCrossRefGoogle Scholar
  45. 45.
    Hammond LE, Neschen S, Romanelli AJ, Cline GW, Ilkayeva OR, Shulman GI, Muoio DM, Coleman RA (2005) Mitochondrial glycerol-3-phosphate acyltransferase-1 is essential in liver for the metabolism of excess acyl-CoAs. J Biol Chem 280:25629–25636PubMedCrossRefGoogle Scholar
  46. 46.
    Cha JY, Repa JJ (2007) The liver X receptor (LXR) and hepatic lipogenes. i: the carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282:743–751PubMedCrossRefGoogle Scholar
  47. 47.
    Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ (2012) Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 51:350–377PubMedCrossRefGoogle Scholar
  48. 48.
    Man WC, Miyazaki M, Chu K, Ntambi J (2006) Colocalization of SCD1 and DGAT2: implying preference for endogenous monounsaturated fatty acids in triglyceride synthesis. J Lipid Res 47:1928–1939PubMedCrossRefGoogle Scholar
  49. 49.
    Miyazaki M, Kim YC, Ntambi JM (2001) A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res 42:1018–1024PubMedGoogle Scholar
  50. 50.
    Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496PubMedCrossRefGoogle Scholar
  51. 51.
    Vial G, Dubouchaud H, Leverve XM (2010) Liver mitochondria and insulin resistance. Acta Biochim Pol 57:389–392PubMedGoogle Scholar
  52. 52.
    Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty RM (2008) A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab 294:E969–E977PubMedCrossRefGoogle Scholar
  53. 53.
    Wu JW, Wang SP, Alvarez F, Casavant S, Gauthier N, Abed L, Soni KG, Yang G, Mitchell GA (2011) Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54:122–132PubMedCrossRefGoogle Scholar
  54. 54.
    Stefan N, Kantartzis K, Häring HU (2008) Causes and metabolic consequences of fatty liver. Endocr Rev 29:939–960PubMedCrossRefGoogle Scholar
  55. 55.
    Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS (2011) Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473:528–531PubMedCrossRefGoogle Scholar
  56. 56.
    Özcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Özdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRefGoogle Scholar
  57. 57.
    Ferré P, Foufelle F (2007) SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68:72–82PubMedCrossRefGoogle Scholar
  58. 58.
    Issandou M, Bouillot A, Brusq JM, Forest MC, Grillot D, Guillard R, Martin S, Michiels C, Sulpice T, Daugan A (2009) Pharmacological inhibition of stearoyl-CoA desaturase 1 improves insulin sensitivity in insulin-resistant rat models. Eur J Pharmacol 618:28–36PubMedCrossRefGoogle Scholar
  59. 59.
    Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone H, Toyoshima H, Osuga J, Yamada N (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13:1193–1202PubMedCrossRefGoogle Scholar
  60. 60.
    Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferré P, Foufelle F (2009) GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 119:1201–1215PubMedCrossRefGoogle Scholar
  61. 61.
    Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082PubMedCrossRefGoogle Scholar
  62. 62.
    Trauner M, Arrese M, Wagner M (2009) Fatty liver and lipotoxicity. Biochim Biophys Acta 1801:299–310PubMedGoogle Scholar
  63. 63.
    Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Enjoji M, Takayanagi R, Nakamuta M (2008) SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med 21:507–511PubMedGoogle Scholar
  64. 64.
    Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M (2002) Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab 282:E46–E51PubMedGoogle Scholar
  65. 65.
    Warensjö E, Risérus U, Vessby B (2005) Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 48:1999–2005PubMedCrossRefGoogle Scholar
  66. 66.
    Bjermo H, Risérus U (2010) Role of hepatic desaturases in obesity-related metabolic disorders. Curr Opin Clin Nutr Metab Care 13:703–708PubMedCrossRefGoogle Scholar
  67. 67.
    Araya J, Rodrigo R, Pettinelli P, Araya AV, Poniachik J, Videla LA (2010) Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity 18:1460–1463PubMedCrossRefGoogle Scholar
  68. 68.
    Elizondo A, Araya J, Rodrigo R, Poniachik J, Csendes A, Maluenda F, Díaz JC, Signorini C, Sgherri C, Comporti M, Videla LA (2007) Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity 15:24–31PubMedCrossRefGoogle Scholar

Copyright information

© AOCS 2013

Authors and Affiliations

  • Shizuyo Tanaka
    • 1
  • Tohru Yamazaki
    • 1
  • Satoshi Asano
    • 2
  • Atsushi Mitsumoto
    • 3
  • Daisuke Kobayashi
    • 1
  • Naomi Kudo
    • 1
  • Yoichi Kawashima
    • 1
  1. 1.Faculty of Pharmaceutical SciencesJosai UniversitySakadoJapan
  2. 2.Department of Pharmaceutical SciencesInternational University of Health and WelfareOhtawaraJapan
  3. 3.Faculty of Pharmaceutical SciencesJosai International UniversityToganeJapan

Personalised recommendations