Skip to main content
Log in

Lipid-Modulating Treatments for Mixed Dyslipidemia Increase HDL-Associated Phospholipase A2 Activity with Differential Effects on HDL Subfractions

  • Original Article
  • Published:
Lipids

Abstract

The effect of lipid-modulating treatments on modification of high density lipoprotein (HDL) subfractions remains unknown. In this study, mixed dyslipidemia patients (n = 100) inadequately controlled with a standard statin dose were randomized to switch to 40 mg of rosuvastatin or add-on extended release nicotinic acid/laropiprant (ER-NA/LRPT) or add-on fenofibrate. The cholesterol concentrations of HDL (HDL-C) subfractions and HDL-associated lipoprotein-associated phospholipase A2 (HDL-Lp-PLA2) activity were assessed at baseline and 3 months later. We observed that large HDL-C increased by 50 and 6 % in the add-on-ER-NA/LRPT and rosuvastatin groups, respectively, while it decreased by 20 % in the add-on-fenofibrate group (p < 0.01 vs baseline for all groups and p < 0.01 for all comparisons among groups). On the other hand, small HDL-C decreased by 17 % in the add-on-ER-NA/LRPT group (p < 0.01 vs baseline), while it increased by 25 % in the add-on-fenofibrate group (p < 0.01 vs baseline) without any change in the rosuvastatin group (p < 0.01 for all comparisons among groups). HDL-Lp-PLA2 activity increased by 55, 33 and 18 % in add-on-ER-NA/LRPT, add-on-fenofibrate and rosuvastatin groups, respectively (p < 0.01 for all comparisons vs baseline and for all comparisons among groups). In conclusion, add-on-ER-NA/LRPT was associated with an increase in large HDL-C and a decrease in small HDL-C, while opposite effects were noticed in the add-on-fenofibrate group. Add-on-ER-NA/LRPT was associated with the most pronounced increase in HDL-Lp-PLA2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANCOVA:

Analysis of covariance

CETP:

Cholesterol ester transfer protein

CVD:

Cardiovascular disease

ER-NA/LRPT:

Extended release nicotinic acid/laropiprant

HDL-C:

High density lipoprotein cholesterol

HDL-Lp-PLA2 :

HDL-associated lipoprotein-associated phospholipase A2

HL:

Hepatic lipase

LDL-C:

Low density lipoprotein cholesterol

NCEP-ATP:

National Cholesterol Education Program Adult Treatment Panel

NMR:

Nuclear magnetic resonance

PAF:

Platelet activating factor

PROBE study:

Prospective, randomized, open-label, blinded end point study

SD:

Standard deviation

SPSS:

Statistical Package for the Social Sciences

TAG:

Triacylglycerol(s)

VAP:

Vertical auto profile

References

  1. Link JJ, Rohatgi A, de Lemos JA (2007) HDL cholesterol: physiology, pathophysiology, and management. Curr Probl Cardiol 32:268–314

    Article  PubMed  Google Scholar 

  2. Asztalos BF, Cupples LA, Demissie S, Horvath KV, Cox CE, Batista MC, Schaefer EJ (2004) High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 24:2181–2187

    Article  PubMed  CAS  Google Scholar 

  3. Guha M, Gao X, Jayaraman S, Gursky O (2008) Correlation of structural stability with functional remodeling of high-density lipoproteins: the importance of being disordered. Biochemistry 47:11393–11397

    Article  PubMed  CAS  Google Scholar 

  4. Kontush A, Chapman MJ (2006) Antiatherogenic small, dense HDL–guardian angel of the arterial wall? Nat Clin Pract Cardiovasc Med 3:144–153

    Article  PubMed  CAS  Google Scholar 

  5. Rallidis LS, Tellis CC, Lekakis J, Rizos I, Varounis C, Charalampopoulos A, Zolindaki M, Dagres N, Anastasiou-Nana M, Tselepis AD (2012) Lipoprotein-associated phospholipase a(2) bound on high-density lipoprotein is associated with lower risk for cardiac death in stable coronary artery disease patients: a 3-year follow-up. J Am Coll Cardiol 60:2053–2060

    Article  PubMed  CAS  Google Scholar 

  6. Durrington P (2003) Dyslipidaemia. Lancet 362:717–731

    Article  PubMed  CAS  Google Scholar 

  7. Liberopoulos E, Vlasserou F, Mitrogianni Z, Papageorgantas I, Elisaf M (2012) Prevalence and risk distribution of residual dyslipidemia in statin-treated patients in Greece. Angiology 63:184–193

    Article  PubMed  Google Scholar 

  8. Kei A, Liberopoulos EN, Mikhailidis DP, Elisaf M (2013) Comparison of switch to the highest dose of rosuvastatin vs. add-on nicotinic acid vs. add-on fenofibrate for mixed dyslipidaemia. Int J Clin Pract 67:412–419

    Article  PubMed  CAS  Google Scholar 

  9. Kei A, Liberopoulos E, Tellis K, Rizzo M, Elisaf M, Tselepis A. Effect of hypolipidemic treatment on emerging risk factors in mixed dyslipidaemia: a randomized pilot trial. Eur J Clin Invest 2013

  10. Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  11. Kostapanos MS, Milionis HJ, Filippatos TD, Christogiannis LG, Bairaktari ET, Tselepis AD, Elisaf MS (2009) Dose-dependent effect of rosuvastatin treatment on HDL-subfraction phenotype in patients with primary hyperlipidemia. J Cardiovasc Pharmacol Ther 14:5–13

    Article  PubMed  CAS  Google Scholar 

  12. Kakafika AI, Xenofontos S, Tsimihodimos V, Tambaki AP, Lourida ES, Kalaitzidis R, Cariolou MA, Elisaf M, Tselepis AD (2003) The PON1 M55L gene polymorphism is associated with reduced HDL-associated PAF-AH activity. J Lipid Res 44:1919–1926

    Article  PubMed  CAS  Google Scholar 

  13. Airan-Javia SL, Wolf RL, Wolfe ML, Tadesse M, Mohler E, Reilly MP (2009) Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low- and high-dose simvastatin monotherapy. Am Heart J 157:687.e1–8

    Article  PubMed  Google Scholar 

  14. Morgan JM, Capuzzi DM, Baksh RI, Intenzo C, Carey CM, Reese D, Walker K (2003) Effects of extended-release niacin on lipoprotein subclass distribution. Am J Cardiol 91:1432–1436

    Article  PubMed  CAS  Google Scholar 

  15. Ikewaki K, Tohyama J, Nakata Y, Wakikawa T, Kido T, Mochizuki S (2004) Fenofibrate effectively reduces remnants, and small dense LDL, and increases HDL particle number in hypertriglyceridemic men—a nuclear magnetic resonance study. J Atheroscler Thromb 11:278–285

    Article  PubMed  CAS  Google Scholar 

  16. Ballantyne C, Gleim G, Liu N et al (2012) Effects of coadministered extended-release niacin/laropiprant and simvastatin on lipoprotein subclasses in patients with dyslipidemia. J Clin Lipidol 6:235–243

    Article  PubMed  Google Scholar 

  17. Tribble DL, Farnier M, Macdonell G, Perevozskaya I, Davies MJ, Gumbiner B, Musliner TA (2008) Effects of fenofibrate and ezetimibe, both as monotherapy and in coadministration, on cholesterol mass within lipoprotein subfractions and low-density lipoprotein peak particle size in patients with mixed hyperlipidemia. Metabolism 57:796–801

    Article  PubMed  CAS  Google Scholar 

  18. Miyazaki T, Shimada K, Miyauchi K, Kume A, Tanimoto K, Kiyanagi T, Sumiyoshi K, Hiki M, Mokuno H, Okazaki S, Sato H, Kurata T, Daida H (2010) Effects of fenofibrate on lipid profiles, cholesterol ester transfer activity, and in-stent intimal hyperplasia in patients after elective coronary stenting. Lipids Health Dis 9:122

    Article  PubMed  Google Scholar 

  19. Agouridis AP, Kostapanos MS, Tsimihodimos V, Kostara C, Mikhailidis DP, Bairaktari ET, Tselepis AD, Elisaf MS (2012) Effect of rosuvastatin monotherapy or in combination with fenofibrate or omega-3 fatty acids on lipoprotein subfraction profile in patients with mixed dyslipidaemia and metabolic syndrome. Int J Clin Pract 66:843–853

    Article  PubMed  CAS  Google Scholar 

  20. Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR (2003) Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23:160–167

    Article  PubMed  CAS  Google Scholar 

  21. van der Hoorn JW, de Haan W, Berbee JF, Havekes LM, Jukema JW, Rensen PC, Princen HM (2008) Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice. Arterioscler Thromb Vasc Biol 28:2016–2022

    Article  PubMed  Google Scholar 

  22. Rye KA, Clay MA, Barter PJ (1999) Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 145:227–238

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki J, Yamamoto K, Ageta M (2002) Effects of fenofibrate on high-density lipoprotein particle size in patients with hyperlipidemia: a randomized, double-blind, placebo-controlled, multicenter, crossover study. Clin Ther 24:1614–1626

    Article  PubMed  CAS  Google Scholar 

  24. Lee MH, Hammad SM, Semler AJ, Luttrell LM, Lopes-Virella MF, Klein RL (2010) HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. J Lipid Res 51:2619–2628

    Article  PubMed  CAS  Google Scholar 

  25. Gao X, Yuan S, Jayaraman S, Gursky O (2009) Differential stability of high-density lipoprotein subclasses: effects of particle size and protein composition. J Mol Biol 387:628–638

    Article  PubMed  CAS  Google Scholar 

  26. Lund-Katz S, Phillips MC (2010) High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem 51:183–227

    Article  PubMed  CAS  Google Scholar 

  27. Salonen JT, Salonen R, Seppanen K, Rauramaa R, Tuomilehto J (1991) HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Circulation 84:129–139

    Article  PubMed  CAS  Google Scholar 

  28. Lagos KG, Filippatos TD, Tsimihodimos V, Gazi IF, Rizos C, Tselepis AD, Mikhailidis DP, Elisaf MS (2009) Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome. Lipids 44:9–16

    Article  PubMed  CAS  Google Scholar 

  29. Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH (2003) Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 23:712–719

    Article  PubMed  CAS  Google Scholar 

  30. Bergmeier C, Siekmeier R, Gross W (2004) Distribution spectrum of paraoxonase activity in HDL fractions. Clin Chem 50:2309–2315

    Article  PubMed  CAS  Google Scholar 

  31. Zheng C, Aikawa M (2012) High-density lipoproteins: from function to therapy. J Am Coll Cardiol 60:2380–2383

    Article  PubMed  CAS  Google Scholar 

  32. Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP (2008) Multiple actions of high-density lipoprotein. Curr Opin Cardiol 23:370–378

    Article  PubMed  Google Scholar 

  33. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W (2011) Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 365:2255–2267

    Article  PubMed  Google Scholar 

  34. Merck 2013 announces HPS2-THRIVE study of TREDAPTIVE™ (Extended-Release Niacin/Laropiprant) did not achieve primary endpoint. Available at: http://www.mercknewsroom.com/press-release/prescription-medicine-news/merck-announces-hps2-thrive-study-tredaptive-extended-relea. Last assessed 30 July 2013

  35. Merck 2013 provides update on next steps for TREDAPTIVE™ (extended-release niacin/laropiprant) Available at: http://www.mercknewsroom.com/press-release/research-and-development-news/merck-provides-update-next-steps-tredaptive-extended-rel. Last assessed 30 July 2013

  36. Ginsberg HN, Elam MB, Lovato LC, Crouse JR 3rd, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, Probstfield J, Grimm RH, Ismail-Beigi F, Bigger JT, Goff DC Jr, Cushman WC, Simons-Morton DG, Byington RP (2010) Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 362:1563–1574

    Article  PubMed  Google Scholar 

  37. Tsimihodimos V, Kakafika A, Tambaki AP, Bairaktari E, Chapman MJ, Elisaf M, Tselepis AD (2003) Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J Lipid Res 44:927–934

    Article  PubMed  CAS  Google Scholar 

  38. Tellis CC, Tselepis AD (2009) The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta 1791:327–338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Atherothrombosis Research Centre of the University of Ioannina for providing access to the laboratory equipment and facilities.

Conflict of interest

Some of the authors have given talks, attended conferences and participated in trials and advisory boards sponsored by various pharmaceutical companies, including Astra-Zeneca, Abbott and Merck Sharpe and Dohme (MSD). There are no other conflicts of interest to be declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Liberopoulos.

About this article

Cite this article

Kei, A., Liberopoulos, E., Tellis, C. et al. Lipid-Modulating Treatments for Mixed Dyslipidemia Increase HDL-Associated Phospholipase A2 Activity with Differential Effects on HDL Subfractions. Lipids 48, 957–965 (2013). https://doi.org/10.1007/s11745-013-3826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3826-y

Keywords

Navigation