Skip to main content
Log in

Hydrolysis Products Generated by Lipoprotein Lipase and Endothelial Lipase Differentially Impact THP-1 Macrophage Cell Signalling Pathways

  • Original Article
  • Published:
Lipids

Abstract

Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes—most associated with atherosclerotic processes—was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A/A:

Antibiotic/antimycotic

ALK:

Anaplastic lymphoma kinase

ANOVA:

Analysis of variance

Apo:

Apolipoprotein

EL:

Endothelial lipase

ESI–MS:

Electrospray ionization–mass spectrometry

FAF-BSA:

Fatty acid free bovine serum albumin

FFA:

Free fatty acid(s)

GC–MS:

Gas chromatography–mass spectrometry

LPL:

Lipoprotein lipase

M-CSFR:

Macrophage colony stimulating factor receptor

PBS:

Phosphate-buffered saline

PDGF:

Platelet derived growth factor

PDGFR:

Platelet derived growth factor receptor

PIP3:

Phosphatidylinositol (3,4,5)-triphosphate

PL:

Phospholipid(s)

PMA:

Phorbol 12-myristate-13-acetate

PtdCho:

Phosphatidylcholine

RTK:

Receptor tyrosine kinase

Stat1:

Signal transducer and activator of transcription factor 1

TAG:

Triacylglycerol(s)

THL:

Tetrahydrolipstatin

Trk:

Tropomyosin-related kinase

VEGFR2:

Vascular endothelial growth factor receptor 2

References

  1. Hide WA, Chan L, Li WH (1992) Structure and evolution of the lipase superfamily. J Lipid Res 33:167–178

    PubMed  CAS  Google Scholar 

  2. Hirata K, Dichek HL, Cioffi JA, Choi SY, Leeper NJ, Quintana L, Kronmal GS, Cooper AD, Quertermous T (1999) Cloning of a unique lipase from endothelial cells extends the lipase gene family. J Biol Chem 274:14170–14175

    Article  PubMed  CAS  Google Scholar 

  3. Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, South V, Amin D, Perrone M, Rader DJ (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 21:424–428

    Article  PubMed  CAS  Google Scholar 

  4. McCoy MG, Sun G-S, Marchadier D, Maugeais C, Glick JM, Rader DJ (2002) Characterization of the lipolytic activity of endothelial lipase. J Lipid Res 43:921–929

    PubMed  CAS  Google Scholar 

  5. Cheng CF, Oosta GM, Bensadoun A, Rosenberg RD (1981) Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem 256:12893–12898

    PubMed  CAS  Google Scholar 

  6. Shimada K, Gill PJ, Silbert JE, Douglas WH, Fanburg BL (1981) Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. J Clin Invest 68:995–1002

    Article  PubMed  CAS  Google Scholar 

  7. Strauss JG, Zimmermann R, Hrzenjak A, Zhou Y, Kratky D, Levak-Frank S, Kostner GM, Zechner R, Frank S (2002) Endothelial cell-derived lipase mediates uptake and binding of high-density lipoprotein (HDL) particles and the selective uptake of HDL-associated cholesterol esters independent of its enzymic activity. Biochem J 368:69–79

    Article  PubMed  CAS  Google Scholar 

  8. Brown RJ, Miller GC, Griffon N, Long CJ, Rader DJ (2007) Glycosylation of endothelial lipase at asparagine-116 reduces activity and the hydrolysis of native lipoproteins in vitro and in vivo. J Lipid Res 48:1132–1139

    Article  PubMed  CAS  Google Scholar 

  9. Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291

    Article  PubMed  CAS  Google Scholar 

  10. Mulder M, Lombardi P, Jansen H, van Berkel TJC, Frants RR, Havekes LM (1992) Heparan sulphate proteoglycans are involved in the lipoprotein lipase-mediated enhancement of the cellular binding of very low density and low density lipoproteins. Biochem Biophys Res Commun 185:582–587

    Article  PubMed  CAS  Google Scholar 

  11. Rumsey SC, Obunike JC, Arad Y, Deckelbaum RJ, Goldberg IJ (1992) Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest 90:1504–1512

    Article  PubMed  CAS  Google Scholar 

  12. Fuki IV, Blanchard N, Jin W, Marchadier DH, Millar JS, Glick JM, Rader DJ (2003) Endogenously produced endothelial lipase enhances binding and cellular processing of plasma lipoproteins via heparan sulfate proteoglycan-mediated pathway. J Biol Chem 278:34331–34338

    Article  PubMed  CAS  Google Scholar 

  13. O’Brien KD, Gordon D, Deeb S, Ferguson M, Chait A (1992) Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest 89:1544–1550

    Article  PubMed  Google Scholar 

  14. Qiu G (2007) Hill JS (2007) Atorvastatin decreases lipoprotein lipase and endothelial lipase expression in human THP-1 macrophages. J Lipid Res 48:2112–2122

    Article  PubMed  CAS  Google Scholar 

  15. Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485

    Article  PubMed  CAS  Google Scholar 

  16. Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Goldberg IJ, Steinberg D, Witztum JL (1991) Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88:10143–10147

    Article  PubMed  Google Scholar 

  17. Azumi H, Hirata K, Ishida T, Kojima Y, Rikitake Y, Takeuchi S, Inoue N, Kawashima S, Hayashi Y, Itoh H, Quertermous T, Yokoyama M (2003) Immunohistochemical localization of endothelial cell-derived lipase in atherosclerotic human coronary arteries. Cardiovasc Res 58:647–654

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi M, Hiyama Y, Yokoyama M, Yu S, Hu Y, Melford K, Bensadoun A, Goldberg IJ (2008) In vivo arterial lipoprotein lipase expression augments inflammatory responses and impairs vascular dilatation. Arterioscler Thromb Vasc Biol 28:455–462

    Article  PubMed  CAS  Google Scholar 

  19. Babaev VR, Fazio S, Gleaves LA, Carter KJ, Semenkovich CF, Linton MF (1999) Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J Clin Invest 103:1697–1705

    Article  PubMed  CAS  Google Scholar 

  20. Babaev VR, Patel MB, Semenkovich CF, Fazio S, Linton MF (2000) Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J Biol Chem 275:26293–26299

    Article  PubMed  CAS  Google Scholar 

  21. Clee SM, Bissada N, Miao F, Miao L, Marais AD, Henderson HE, Steures P, McManus J, McManus B, LeBoeuf RC, Kastelein JJ, Hayden MR (2000) Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. J Lipid Res 41:521–531

    PubMed  CAS  Google Scholar 

  22. Qiu G, Ho AC, Yu W, Hill JS (2007) Suppression of endothelial or lipoprotein lipase in THP-1 macrophages attenuates proinflammatory cytokine secretion. J Lipid Res 48:385–394

    Article  PubMed  CAS  Google Scholar 

  23. Kota RS, Ramana CV, Tenorio FA, Enelow RI, Rutledge JC (2005) Differential effects of lipoprotein lipase on tumor necrosis factor-α and interferon-γ-mediated gene expression in human endothelial cells. J Biol Chem 280:31076–31084

    Article  PubMed  CAS  Google Scholar 

  24. Riederer M, Lechleitner M, Hrzenjak A, Koefeler H, Desoye G, Heinemann A, Frank S (2011) Endothelial lipase (EL) and EL-generated lysophosphatidylcholines promote IL-8 expression in endothelial cells. Atherosclerosis 214:338–344

    Article  PubMed  CAS  Google Scholar 

  25. Skottova N, Savonen R, Lookene A, Hultin M, Olivecrona G (1995) Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J Lipid Res 36:1334–1344

    PubMed  CAS  Google Scholar 

  26. Brundert M, Heeren J, Merkel M, Carambia A, Herkel J, Groitl P, Dobner T, Ramakrishnan R, Moore KJ, Rinninger F (2011) Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J Lipid Res 52:745–758

    Article  PubMed  CAS  Google Scholar 

  27. Brown RJ, Gauthier A, Parks RJ, McPherson R, Sparks DL, Schultz JR, Yao Z (2004) Severe hypoalphalipoproteinemia in mice expressing human hepatic lipase deficient in binding to heparan sulfate proteoglycan. J Biol Chem 279:42403–42409

    Article  PubMed  CAS  Google Scholar 

  28. Chung BH, Wilkinson T, Geer JC, Segrest JP (1980) Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res 21:284–291

    PubMed  CAS  Google Scholar 

  29. Griffon N, Budreck EC, Long CJ, Broedl UC, Marchadier DHL, Glick JM, Rader DJ (2006) Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras. J Lipid Res 47:1803–1811

    Article  PubMed  CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  31. Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295:88–100

    Article  PubMed  CAS  Google Scholar 

  32. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  PubMed  CAS  Google Scholar 

  33. Ford DA, Monda JK, Brush RS, Anderson RE, Richards MJ, Fliesler SJ (2008) Lipidomic analysis of the retina in a rat model of Smith–Lemli–Opitz syndrome: alterations in docosahexaenoic acid content of phospholipid molecular species. J Neurochem 105:1032–1047

    Article  PubMed  CAS  Google Scholar 

  34. Quehenberger O, Armando A, Dumlao D, Stephens DL, Dennis EA (2008) Lipidomics analysis of essential fatty acids in macrophages. Prostaglandins Leukot Essent Fatty Acids 79:123–129

    Article  PubMed  CAS  Google Scholar 

  35. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  36. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  37. Gauster M, Rechberger G, Sovic A, Hörl G, Steyrer E, Sattler W, Frank S (2005) Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J Lipid Res 46:1517–1525

    Article  PubMed  CAS  Google Scholar 

  38. Brown RJ, Rader DJ (2007) Lipases as modulators of atherosclerosis in murine models. Curr Drug Targets 8:1307–1319

    Article  PubMed  CAS  Google Scholar 

  39. Bengtsson G, Olivecrona T (1980) Lipoprotein lipase. Mechanism of product inhibition. Eur J Biochem 106:557–562

    Article  PubMed  CAS  Google Scholar 

  40. Blanchette-Mackie EJ, Scow RO (1976) Retention of lipolytic products in chylomicrons incubated with lipoprotein lipase: electron microscope study. J Lipid Res 17:57–67

    PubMed  CAS  Google Scholar 

  41. Li XA, Hatanaka K, Ishibashi-Ueda H, Yutani C, Yamamoto A (1995) Characterization of serum amyloid P component from human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol 15:252–257

    Article  PubMed  CAS  Google Scholar 

  42. Schaefer LE, Adlersberg D, Steinberg AG (1958) Serum phospholipids: genetic and environmental influences. Circulation 18:341–347

    Article  PubMed  CAS  Google Scholar 

  43. Rider OJ, Holloway CJ, Emmanuel Y, Bloch E, Clarke K, Neubauer S (2012) Increasing plasma free fatty acids in healthy subjects induces aortic distensibility changes seen in obesity. Circ Cardiovasc Imaging 5:367–375

    Article  PubMed  Google Scholar 

  44. Kobayashi J, Hashimoto H, Fukamachi I, Tashiro J, Shirai K, Saito Y, Yoshida S (1993) Lipoprotein lipase mass and activity in severe hypertriglyceridemia. Clin Chim Acta 216:113–123

    Article  PubMed  CAS  Google Scholar 

  45. Badellino KO, Wolfe ML, Reilly MP, Rader DJ (2006) Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med 3:e22

    Article  PubMed  Google Scholar 

  46. Krettek A, Östergren-Lundén G, Fager G, Rosmond C, Bondjers G, Lustig F (2001) Expression of PDGF receptors and ligand-induced migration of partially differentiated human monocyte-derived macrophages: influence of IFN-γ and TGF-β. Atherosclerosis 156:267–275

    Article  PubMed  CAS  Google Scholar 

  47. Inaba T, Kawamura M, Gotoda T, Harada K, Shimada M, Ohsuga J, Shimano H, Akanuma Y, Yazaki Y, Yamada N (1995) Effects of platelet-derived growth factor on the synthesis of lipoprotein lipase in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 15:522–528

    Article  PubMed  CAS  Google Scholar 

  48. Stevenson FT, Shearer GC, Atkinson DN (2001) Lipoprotein-stimulated mesangial cell proliferation and gene expression are regulated by lipoprotein lipase. Kidney Int 59:2062–2068

    PubMed  CAS  Google Scholar 

  49. Pulford K, Morris SW, Turturro F (2004) Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 199:330–358

    Article  PubMed  CAS  Google Scholar 

  50. Baruzzi A, Iacobucci I, Soverini S, Lowell CA, Martinelli G, Berton G (2010) c-Abl and Src-family kinases cross-talk in regulation of myeloid cell migration. FEBS Lett 584:15–21

    Article  PubMed  CAS  Google Scholar 

  51. Shaposhnik Z, Wang X, Lusis AJ (2010) Arterial colony stimulating factor-1 influences atherosclerotic lesions by regulating monocyte migration and apoptosis. J Lipid Res 51:1962–1970

    Article  PubMed  CAS  Google Scholar 

  52. Irvine KM, Andrews MR, Fernandez-Rojo MA, Schroder K, Burns CJ, Su S, Wilks AF, Parton RG, Hume DA, Sweet MJ (2009) Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. J Leukoc Biol 85:278–288

    Article  PubMed  CAS  Google Scholar 

  53. Lim W-S, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117:940–951

    Article  PubMed  CAS  Google Scholar 

  54. Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9:225–230

    Article  PubMed  CAS  Google Scholar 

  55. Kraemer R, Baker PJ, Kent KC, Ye Y, Han JJ, Tejada R, Silane M, Upmacis R, Deeb R, Chen Y, Levine DM, Hempstead B (2005) Decreased neurotrophin TrkB receptor expression reduces lesion size in the apolipoprotein E-null mutant mouse. Circulation 112:3644–3653

    Article  PubMed  CAS  Google Scholar 

  56. Donovan MJ, Miranda RC, Kraemer R, McCaffrey TA, Tessarollo L, Mahadeo D, Sharif S, Kaplan DR, Tsoulfas P, Parada L, Toran-Allerand CD, Hajjar DP, Hempstead BL (1995) Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol 147:309–324

    PubMed  CAS  Google Scholar 

  57. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  58. Fernández-Hernando C, József L, Jenkins D, Di Lorenzo A, Sessa WC (2009) Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis. Arterioscler Thromb Vasc Biol 29:2033–2040

    Article  PubMed  Google Scholar 

  59. Fernández-Hernando C, Ackah E, Yu J, Suárez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ, Sessa WC (2007) Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab 6:446–457

    Article  PubMed  Google Scholar 

  60. Chang JD, Sukhova GK, Libby P, Schvartz E, Lichtenstein AH, Field SJ, Kennedy C, Madhavarapu S, Luo J, Wu D, Cantley LC (2007) Deletion of the phosphoinositide 3-kinase p110γ gene attenuates murine atherosclerosis. Proc Natl Acad Sci USA 104:8077–8082

    Article  PubMed  CAS  Google Scholar 

  61. Jin W, Wang X, Millar JS, Quertermous T, Rothblat GH, Glick JM, Rader DJ (2007) Hepatic proprotein convertases modulate HDL metabolism. Cell Metab 6:129–136

    Article  PubMed  Google Scholar 

  62. Singaraja RR, Sivapalaratnam S, Hovingh K, Dubé MP, Castro-Perez J, Collins HL, Adelman SJ, Riwanto M, Manz J, Hubbard B, Tietjen I, Wong K, Mitnaul LJ, van Heek M, Lin L, Roddy TA, McEwen J, Dallinge-Thie G, van Vark-van der Zee L, Verwoert G, Winther M, van Duijn C, Hofman A, Trip MD, Marais AD, Asztalos B, Landmesser U, Sijbrands E, Kastelein JJ, Hayden MR (2013) The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. Circ Cardiovasc Genet 6:54–62

    Article  PubMed  CAS  Google Scholar 

  63. Brown RJ, Lagor WR, Sankaranaravanan S, Yasuda T, Quertermous T, Rothblat GH, Rader DJ (2010) Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res 107:357–364

    Article  PubMed  CAS  Google Scholar 

  64. Escolà-Gil JC, Chen X, Julve J, Quesada H, Santos D, Metso J, Tous M, Jauhiainen M, Blanco-Vaca F (2013) Hepatic lipase- and endothelial lipase-deficiency in mice promotes macrophage-to-feces RCT and HDL antioxidant properties. Biochim Biophys Acta 1831:691–697

    Article  PubMed  Google Scholar 

  65. Ishida T, Choi SY, Kundu RK, Spin J, Yamashita T, Hirata K, Kojima Y, Yokoyama M, Cooper AD, Quertermous T (2004) Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J Biol Chem 279:45085–45092

    Article  PubMed  CAS  Google Scholar 

  66. Ko KWS, Paul A, Ma K, Li L, Chan L (2005) Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE-/- and LDLR-/- mice. J Lipid Res 46:2586–2594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an IgniteR&D grant from the Research & Development Corporation of Newfoundland and Labrador (R.J.B.), a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (R.J.B.), plus National Institutes of Health Grants HL-074214 and HL-111906 (D.A.F.). We are grateful to Dr. Daniel J. Rader (University of Pennsylvania, Philadelphia, PA, USA) for the lipase expression vectors used in our study. We also wish to thank Ms. Rachel Hickey (Saint Louis University, St. Louis, MO, USA) for her technical assistance, Ms. Catherine Wright (University of Washington, Seattle, WA, USA) for advice with statistical analyses, and Dr. William Lagor (University of Pennsylvania, Philadelphia, PA, USA) for his critical review of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Brown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 144 kb)

About this article

Cite this article

Essaji, Y., Yang, Y., Albert, C.J. et al. Hydrolysis Products Generated by Lipoprotein Lipase and Endothelial Lipase Differentially Impact THP-1 Macrophage Cell Signalling Pathways. Lipids 48, 769–778 (2013). https://doi.org/10.1007/s11745-013-3810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3810-6

Keywords

Navigation