Skip to main content
Log in

Headspace Volatile Oxylipins of Eastern Himalayan Moss Cyathophorella adiantum Extracted by Sample Enrichment Probe

  • Original Article
  • Published:
Lipids

Abstract

Cyathophorella adiantum (Griff.) M. Fleisch. (Division-Bryophyta, Family-Daltoniaceae), an Eastern Himalayan moss was studied for the first time to identify the volatiles derived from cellular and membrane bound fatty acids. A high capacity sample enrichment probe (SEP) was used for extraction of headspace volatile (HSV) molecules followed by GC–MS analysis. Different short-chain oxylipins like alkenes, alkanes, saturated and unsaturated alcohols, saturated and unsaturated aldehydes, ketones were identified along with free and esterified fatty acids, cyclo compounds and some by-products of secondary metabolites. Fatty acid analysis of neutral lipids (NL) and phospholipids (PL) of this plant exhibits the predominance of C16 and C18 fatty acids. It also reveals some interesting information that might indicate the possible fatty acid precursors for volatile generation and their sources in this plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FA:

Fatty acid(s)

FAME:

Fatty acids methyl ester(s)

HSV:

Headspace volatile(s)

LOX:

Lipoxygenase

NL:

Neutral lipid(s)

PL:

Phospholipid(s)

PDMS:

Polydimethylsiloxane

PUFA:

Polyunsaturated fatty acid(s)

SEP:

Sample enrichment probe

References

  1. Blee E (1998) Biosynthesis of phytooxylipins: the peroxygenase pathway. Fett 100(4–5):121–127

    Article  CAS  Google Scholar 

  2. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297

    Article  CAS  Google Scholar 

  3. Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517

    Article  PubMed  CAS  Google Scholar 

  4. Hamberg M, Ponce-de-Leon I, Rodriguez MJ, Castresana C (2005) α-Dioxygenases. Biochem Biophys Res Commun 338:169–174

    Article  PubMed  CAS  Google Scholar 

  5. Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Op Plant Biol 6:372–378

    Article  CAS  Google Scholar 

  6. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  7. Dembitsky VM (1993) Lipids of bryophytes. Prog Lipid Res 32:281–356

    Article  PubMed  CAS  Google Scholar 

  8. Zinmeister HD, Mues R (eds) (1990) Bryophytes: their Chemistry and Chemical Taxonomy. Clarendon Press, Oxford

    Google Scholar 

  9. Asakawa Y (1990) Biologically active substances from Bryophytes. In: Chopra RN, Bhatla SC (eds) Bryophyte Development: Physiology and Biochemistry. CRC Press, Boca Raton, pp 259–287

    Google Scholar 

  10. Asakawa Y (1995) Chemical constituents of the bryophytes. In: Herz W, Kirby WB, Moore RE, Steglich W, Tamm Ch (eds) Progress in the Chemistry of Organic Natural Products, vol 65. Springer, Vienna, pp 1–618

    Chapter  Google Scholar 

  11. Karunen P (1982) Possible evolutionary significance of galactolipid fatty acids in Bryophyta. J Hattori Bot Lab 53:255–269

    CAS  Google Scholar 

  12. Dembitsky VM, Rezanka T (1995) Distribution of diacylglycerylhomoserine, phospholipids and fatty acids in thirteen moss species from Southwestern Asia. Biochem Sys Ecol 23(1):71–78

    Article  CAS  Google Scholar 

  13. Bottcher C, Pollmann S (2009) Plant oxylipins: plant responses to 12-oxo-phyto dienoic acid are governed by its specific structural and functional properties. FEBS J 276:4693–4704

    Article  PubMed  CAS  Google Scholar 

  14. Gerwick WH (1994) Structure and biosynthesis of marine algal oxylipins. Biochem Biophys Acta 1211(3):243–255

    Article  PubMed  CAS  Google Scholar 

  15. Pohnert G, Boland W (2002) The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat Prod Rep 19:108–122

    Article  PubMed  CAS  Google Scholar 

  16. d’Ippolito G, Lamari N, Montresor M, Romano G, Cutignano A, Gerecht A, Cimino G, Fontana A (2009) 15S- lipoxygenase metabolism in the marine diatom Pseudo-nitzschia delicatissima. New Phytol 183:1064–1071

    Article  PubMed  Google Scholar 

  17. Rempt M, Pohnert G (2010) Novel acetylenic oxylipin from the moss Dicranum scoparium with antifeeding activity against herbivorous slugs. Angew Chem Int Ed 49:4755–4758

    Article  CAS  Google Scholar 

  18. Asakawa Y, Ludwiczuk A, Nagashima F (2012a) Phytochemical and biological studies of bryophytes. Phytochem http://dx.doi.org/10.1016/j.phytochem.2012.04.012

  19. Bukvicki D, Gottardi D, Veljic M, Martin PD, Vannini L, Guerzoni ME (2012) Identification of volatile components of liverwort (Porella cordaeana) extracts using GC/MS-SPME and their antimicrobial activity. Molecules 17:6982–6995

    Article  PubMed  CAS  Google Scholar 

  20. Li L, Zhao J (2009) Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid-phase microextraction and gas chromatography/mass spectrometry (GC/MS). Molecules 14:2195–2201

    Article  PubMed  CAS  Google Scholar 

  21. Mues R (2000) Chemical constituents and biochemistry. In: Shaw AJ, Goffinet B (eds) Bryophyte Biology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  22. Qiao F, Ma SC, Lin RC, Kong LY (2004) GC-MS analysis of essential oil of Rhododendron giganteum. J Chin Pharm 39:704–706

    CAS  Google Scholar 

  23. Bai XW, Song CH, You JM, Sun ZW, Fu YY, Liang G (2010) Determination of fatty acids (C1–C10) from bryophytes and pteridophytes. Chromatographia 71:1125–1129

    Article  CAS  Google Scholar 

  24. Gangulee HC (1977) Mosses of Eastern India and adjacent regions: A monograph, Fac.6. Calcutta, India

  25. Gangulee HC (1985) Handbook of Indian Mosses. Amerind Publishing, New Delhi, India

    Google Scholar 

  26. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  27. Poddar-Sarkar M (1996) The fixative lipid of tiger pheromone. J Lipid Med Cell Sig 15:89–101

    Article  CAS  Google Scholar 

  28. Burger BV, Marx B, Roux M, Burger WJG (2006) Simplified analysis of organic compounds in headspace and aqueous samples by high-capacity sample enrichment probe. J Chromatogr A 1121:259–267

    Article  PubMed  CAS  Google Scholar 

  29. Ozdemir T, Yayn N, Cansu TB, Volga C, Yayn N (2009) Essential oils in mosses (Brachythecium salebrosum, Eurhynchium pulchellum and Plagiomnium undulatum) grown in Turkey. Asian J Chem 21:5505–5509

    CAS  Google Scholar 

  30. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Op Plant Biol 9:274–280

    Article  CAS  Google Scholar 

  31. Noordermeer MA, Veldink GA, Vliegenthart, JF (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2:494–504

    Article  PubMed  CAS  Google Scholar 

  32. Croft K, Jüttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101:13–24

    PubMed  CAS  Google Scholar 

  33. Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K (2003) Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus. J Plant Physiol 160:1219–1231

    Article  PubMed  CAS  Google Scholar 

  34. Zeringue HJ (1992) Effects of C6–C10 alkenals and alkanals on eliciting a defense response in the developing cotton ball. Phytochem 31:2305–2308

    Article  CAS  Google Scholar 

  35. Croisier E, Rempt M, Ponhert G (2010) Survey of volatile oxylipins and their biosynthetic precursors in bryophytes. Phytochem 71:574–580

    Article  CAS  Google Scholar 

  36. Wichard T, Go¨bel C, Feussner I, Pohnert G (2005) Unprecedented lipoxygenase/hydroperoxidelyase pathways in the moss Physcomitrella patens. Angew Chem 44:158–161

    Article  CAS  Google Scholar 

  37. Ucuncu O, Cansu TB, Ozdemir T, Alpaykaraoglu S, Yayli N (2010) Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb. from Turkey. Turk J Chem 34:825–834

    CAS  Google Scholar 

  38. Toyota M, Asakawa Y (1994) Volatile constituent of the liverwort Chiloscyphus pallidus (Mitt.) Engel & Schuster. Flav Fragr J 9:237–240

    Article  CAS  Google Scholar 

  39. Saritas Y, Sonwa MM, Hassan I, Ko¨nig WA, Muhle H, Mues R (2001) Volatile constituents in mosses (Musci). Phytochem 57:443–457

    Article  CAS  Google Scholar 

  40. Spiteller D, Spiteller G (2000) Direkter Nachweis von toxischem 2,4-Decadienal in oxydiertem Low-Density-Lipoprotein durch Fest-phasenextraktion. Angew Chem 112:595–597

    Article  Google Scholar 

  41. Asakawa Y, Ludwiczuk A, Nagashima F (2012) Chemical Constituents of Bryophytes: bio- and Chemical Diversity, Biological Activity and Chemosystematics. In: Kinghorn DA, Falk H, Kobayashi J (eds) Progress in the Chemistry of Organic Natural Products, vol 95. Springer, Vienna, pp 1–760

    Google Scholar 

  42. Stumpe M, Bode J, Go¨bel C, Wichard T, Schaaf A, Frank W, Frank M, Reski R, Pohnert G, Feussner I (2006) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim Biophys Acta 1761:301–312

    Article  PubMed  CAS  Google Scholar 

  43. Matsui K, Kurishita S, Hisamitsu A, Kajiwara T (2000) A lipid-hydrolysing activity involved in hexenal formation. Biochem Soc Trans 28:857–860

    Article  PubMed  CAS  Google Scholar 

  44. Gellermann JL, Anderson WH, Richardson DG, Schlenk H (1975) Distribution of arachidonic and eicosapentanoic acids in the lipids of mosses. Biochim et Biophys Acta 388(2):277–290

    Article  Google Scholar 

  45. Gardner HW, Grechkin AN (2002) Biocatalysis by the Plant Lipoxygenase Pathway: Oxygenated Fatty Acid production and Hydroperoxide Lyases. In: Kuo TM, Gardner HW (eds) Lipid Biotechnology. CRC Press, London UK

    Chapter  Google Scholar 

  46. Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaun J, Potin P (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathway. Plant Physiol 135(3):1838–1848

    Article  PubMed  CAS  Google Scholar 

  47. Weber H (2002) Fatty acid derived signals in plants. Trends Plant Sci 7(5):217–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We heartily acknowledge the kind assistance from The Programme Co-ordinator, Centre of Advanced Study and the Head of the Department of Botany for giving us infrastructural support. We are thankful to the Department of Science and Technology, the Government of West Bengal for funding. We deeply acknowledge the UGS-CAS and DST-FIST programme, Government of India for providing us with instrument facilities. We are grateful to Dr. Lopamudra Saha, Assistant Professor of the University of Kualu-Zulu, South Africa and Dr. Eke Zsuzsanna, Kramarics Aron of the Department of Chemistry, Eotvos Lorand University, Hungary for assisting us in many ways. We are indebted to the scientists who have given us their valuable time for critically reviewing this article.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Poddar-Sarkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

About this article

Cite this article

Mitra, S., Burger, B.V. & Poddar-Sarkar, M. Headspace Volatile Oxylipins of Eastern Himalayan Moss Cyathophorella adiantum Extracted by Sample Enrichment Probe. Lipids 48, 997–1004 (2013). https://doi.org/10.1007/s11745-013-3807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3807-1

Keywords

Navigation