Skip to main content
Log in

Small High-Density Lipoprotein (HDL) Subclasses are Increased with Decreased Activity of HDL-Associated Phospholipase A2 in Subjects with Prediabetes

  • Original Article
  • Published:
Lipids

Abstract

Alterations in high-density lipoprotein (HDL) subclass distribution, as well as in the activities of HDL-associated enzymes, have been associated with increased cardiovascular disease (CVD) risk. HDL subclass distribution and the activities of HDL-associated enzymes remain unknown in prediabetic patients, a condition also associated with increased CVD risk. The aim of the present study was to assess any differences in HDL subclass distribution (using polyacrylamide gel electrophoresis) and in activities of HDL-associated enzymes between prediabetic (impaired fasting glucose, IFG, n = 80) and non-prediabetic subjects (n = 105). Subjects with prediabetes had significantly increased waist circumference, blood pressure and triacylglycerol (TAG) levels compared with subjects with fasting glucose levels <100 mg/dL (all p < 0.05). The proportion of small HDL3 over HDL cholesterol (HDL-C) was significantly increased in prediabetic subjects compared with their controls (p < 0.05). The activity of the anti-atherogenic HDL-associated lipoprotein-associated phospholipase A2 (HDL-LpPLA2) was significantly lower in subjects with prediabetes (p < 0.05), whereas the activity of paraoxonase 1 (using both paraoxon and phenyl acetate as substrates) did not significantly differ between subjects with or without prediabetes. In a stepwise linear regression analysis, the proportion of small HDL3 over HDL-C concentration was independently associated with the presence of prediabetes and with total cholesterol and TAG concentration (positively), as well as with HDL-C levels (negatively). We also observed a trend of increased small dense low-density lipoprotein cholesterol levels in prediabetic subjects compared with their controls. Subjects with IFG exhibit increased proportion of small HDL3 particles combined with decreased activity of the anti-atherogenic HDL-LpPLA2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADA:

American Diabetes Association

apo:

Apolipoprotein

BMI:

Body mass index

CETP:

Cholesteryl ester transfer protein

CHD:

Coronary heart disease

CVD:

Cardiovascular disease

HDL:

High-density lipoprotein

HDL2:

Large high-density lipoprotein subclass

HDL3:

Small high-density lipoprotein subclass

HDL-C:

High-density lipoprotein cholesterol

HDL-LpPLA2 :

High-density lipoprotein-associated phospholipase A2

HOMA:

Homeostasis model assessment

IFG:

Impaired fasting glucose

IGT:

Impaired glucose tolerance

LCAT:

Lecithin: cholesterol acyltransferase

LDL-C:

Low-density lipoprotein cholesterol

Lp(a):

Lipoprotein a

LpPLA2 :

Lipoprotein-associated phospholipase A2

PON1:

Paraoxonase-1

Rf:

Retention factor

sdLDL-C:

Small dense low-density lipoprotein cholesterol

T2DM:

Type 2 diabetes mellitus

TAG:

Triacylglycerol

TC:

Total cholesterol

VLDL:

Very low-density lipoprotein

References

  1. American Diabetes Association (2008) Economic costs of diabetes in the U.S. in 2007. Diabetes care 31:596–615

    Google Scholar 

  2. American Diabetes Association (2012) Standards of medical care in diabetes. Diabetes care 35(Suppl 1):S11–S63

    Google Scholar 

  3. Moutzouri E, Tsimihodimos V, Rizos E, Elisaf M (2011) Prediabetes: to treat or not to treat? Eur J Pharmacol 672:9–19

    Article  PubMed  CAS  Google Scholar 

  4. Kontush A, Chapman MJ (2006) Antiatherogenic small, dense HDL-guardian angel of the arterial wall? Nat Clin Pract Cardiovasc Med 3:144–153

    Article  PubMed  CAS  Google Scholar 

  5. Mueller O, Chang E, Deng D, Franz T, Jing D, Kincaid R, Konigshofer Y, Kratzmeier M, McNulty M, Qian H, Schneider J, Schulte H, Seedorf U, Tian X, Van Cleve M, Yang D, Assmann G (2008) PROCAM Study: risk prediction for myocardial infarction using microfluidic high-density lipoprotein (HDL) sub fractionation is independent of HDL cholesterol. Clin Chem Lab Med 46:490–498

    PubMed  CAS  Google Scholar 

  6. Filippatos T, Derdemezis C, Voulgari P, Tsimihodimos V, Elisaf M, Tselepis A, Drosos A (2013). Effects of 12 months of treatment with disease-modifying anti-rheumatic drugs on low and high density lipoprotein subclass distribution in patients with early rheumatoid arthritis: a pilot study. Scand J Rheumatol (epub ahead of print)

  7. Kostapanos MS, Milionis HJ, Filippatos TD, Christogiannis LG, Bairaktari ET, Tselepis AD, Elisaf MS (2009) Dose-dependent effect of rosuvastatin treatment on HDL-subfraction phenotype in patients with primary hyperlipidemia. J Cardiovasc Pharmacol Ther 14:5–13

    Article  PubMed  CAS  Google Scholar 

  8. Tselepis AD, Chapman JM (2002) Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. Atheroscler 3:57–68

    Article  CAS  Google Scholar 

  9. James RW (2006) A long and winding road: defining the biological role and clinical importance of paraoxonases. Clin Chem Lab Med 44:1052–1059

    Article  PubMed  CAS  Google Scholar 

  10. Farbstein D, Levy AP (2012) HDL dysfunction in diabetes: causes and possible treatments. Expert Rev Cardiovasc Ther 10:353–361

    Article  PubMed  CAS  Google Scholar 

  11. Filippatos TD, Kiortsis DN, Liberopoulos EN, Georgoula M, Mikhailidis DP, Elisaf MS (2005) Effect of orlistat, micronised fenofibrate and their combination on metabolic parameters in overweight and obese patients with the metabolic syndrome: the FenOrli study. Curr Med Res Opin 21:1997–2006

    Article  PubMed  CAS  Google Scholar 

  12. Sakurabayashi I, Saito Y, Kita T, Matsuzawa Y, Goto Y (2001) Reference intervals for serum apolipoproteins A-I, A-II, B, C-II, C-III, and E in healthy Japanese determined with a commercial immunoturbidimetric assay and effects of sex, age, smoking, drinking, and Lp(a) level. Clin Chim Acta 312:87–95

    Article  PubMed  CAS  Google Scholar 

  13. Filippatos T, Tsimihodimos V, Kostapanos M, Kostara C, Bairaktari E, Kiortsis D, Elisaf M (2008) Analysis of the 6-month effect of orlistat, alone or in combination with fenofibrate, administration on triglyceride-rich lipoprotein metabolism in overweight and obese patients with metabolic syndrome. J Clin Lipidol 2:279–284

    Article  PubMed  Google Scholar 

  14. Nakou ES, Filippatos TD, Agouridis AP, Kostara C, Bairaktari ET, Elisaf MS (2010) The effects of ezetimibe and/or orlistat on triglyceride-rich lipoprotein metabolism in obese hypercholesterolemic patients. Lipids 45:445–450

    Article  PubMed  CAS  Google Scholar 

  15. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. J Am Coll Cardiol 44:720–732

    Article  PubMed  Google Scholar 

  16. Filippatos TD, Liberopoulos EN, Kostapanos M, Gazi IF, Papavasiliou EC, Kiortsis DN, Tselepis AD, Elisaf MS (2008) The effects of orlistat and fenofibrate, alone or in combination, on high-density lipoprotein subfractions and pre-beta1-HDL levels in obese patients with metabolic syndrome. Diabetes Obes Metab 10:476–483

    Article  PubMed  CAS  Google Scholar 

  17. Tselepis AD, Dentan C, Karabina SA, Chapman MJ, Ninio E (1995) PAF-degrading acetylhydrolase is preferentially associated with dense LDL and VHDL-1 in human plasma. Catalytic characteristics and relation to the monocyte-derived enzyme. Arterioscler Thromb Vasc Biol 15:1764–1773

    Article  PubMed  CAS  Google Scholar 

  18. Nakou ES, Filippatos TD, Georgoula M, Kiortsis DN, Tselepis AD, Mikhailidis DP, Elisaf MS (2008) The effect of orlistat and ezetimibe, alone or in combination, on serum LDL and small dense LDL cholesterol levels in overweight and obese patients with hypercholesterolaemia. Curr Med Res Opin 24:1919–1929

    Article  PubMed  CAS  Google Scholar 

  19. Tzotzas T, Filippatos TD, Triantos A, Bruckert E, Tselepis AD, Kiortsis DN (2008) Effects of a low-calorie diet associated with weight loss on lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in healthy obese women. Nutr Metab Cardiovasc Dis 18:477–482

    Article  PubMed  CAS  Google Scholar 

  20. Tsimihodimos V, Karabina SA, Tambaki AP, Bairaktari E, Goudevenos JA, Chapman MJ, Elisaf M, Tselepis AD (2002) Atorvastatin preferentially reduces LDL-associated platelet-activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB. Arterioscler Thromb Vasc Biol 22:306–311

    Article  PubMed  CAS  Google Scholar 

  21. Nakou ES, Filippatos TD, Kiortsis DN, Derdemezis CS, Tselepis AD, Mikhailidis DP, Elisaf MS (2008) The effects of ezetimibe and orlistat, alone or in combination, on high-density lipoprotein (HDL) subclasses and HDL-associated enzyme activities in overweight and obese patients with hyperlipidaemia. Expert Opin Pharmacother 9:3151–3158

    Article  PubMed  CAS  Google Scholar 

  22. Filippatos TD, Gazi IF, Liberopoulos EN, Athyros VG, Elisaf MS, Tselepis AD, Kiortsis DN (2007) The effect of orlistat and fenofibrate, alone or in combination, on small dense LDL and lipoprotein-associated phospholipase A2 in obese patients with metabolic syndrome. Atherosclerosis 193:428–437

    Article  PubMed  CAS  Google Scholar 

  23. Rashid S, Uffelman KD, Lewis GF (2002) The mechanism of HDL lowering in hypertriglyceridemic, insulin-resistant states. J Diabetes Complicat 16:24–28

    Article  PubMed  Google Scholar 

  24. Coniglio RI, Merono T, Montiel H, Malaspina MM, Salgueiro AM, Otero JC, Ferraris R, Schreier L, Brites F, Gomez Rosso L (2012) HOMA-IR and non-HDL-C as predictors of high cholesteryl ester transfer protein activity in patients at risk for type 2 diabetes. Clin Biochem 45:566–570

    Article  PubMed  CAS  Google Scholar 

  25. Julius U, Jauhiainen M, Ehnholm C, Pietzsch J (2007) Lipid transfer protein activities in subjects with impaired glucose tolerance. Clin Chem Lab Med 45:237–243

    Article  PubMed  CAS  Google Scholar 

  26. Rashid S, Watanabe T, Sakaue T, Lewis GF (2003) Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem 36:421–429

    Article  PubMed  CAS  Google Scholar 

  27. von Eckardstein A, Nofer JR, Assmann G (2001) High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27

    Article  Google Scholar 

  28. Lagos KG, Filippatos TD, Tsimihodimos V, Gazi IF, Rizos C, Tselepis AD, Mikhailidis DP, Elisaf MS (2009) Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome. Lipids 44:9–16

    Article  PubMed  CAS  Google Scholar 

  29. Wang J, Stancakova A, Soininen P, Kangas AJ, Paananen J, Kuusisto J, Ala-Korpela M, Laakso M (2012) Lipoprotein subclass profiles in individuals with varying degrees of glucose tolerance: a population-based study of 9399 Finnish men. J Intern Med 272:562–572

    Article  PubMed  CAS  Google Scholar 

  30. Tian L, Long S, Li C, Liu Y, Chen Y, Zeng Z, Fu M (2012) High-density lipoprotein subclass and particle size in coronary heart disease patients with or without diabetes. Lipids Health Dis 11:54

    Article  PubMed  CAS  Google Scholar 

  31. Festa A, Williams K, Hanley AJ, Otvos JD, Goff DC, Wagenknecht LE, Haffner SM (2005) Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation 111:3465–3472

    Article  PubMed  Google Scholar 

  32. Morgan J, Carey C, Lincoff A, Capuzzi D (2004) High-density lipoprotein subfractions and risk of coronary artery disease. Curr Atheroscler Rep 6:359–365

    Article  PubMed  Google Scholar 

  33. Asztalos BF, Cupples LA, Demissie S, Horvath KV, Cox CE, Batista MC, Schaefer EJ (2004) High-density lipoprotein subpopulation profile and coronary heart disease prevalence in male participants of the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 24:2181–2187

    Article  PubMed  CAS  Google Scholar 

  34. Asztalos BF, Collins D, Cupples LA, Demissie S, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ (2005) Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans affairs HDL intervention trial. Arterioscler Thromb Vasc Biol 25:2185–2191

    Article  PubMed  CAS  Google Scholar 

  35. Sakuma N, Yoshikawa M, Hibino T, Ohte N, Kamiya T, Kunimatsu M, Kimura G, Inoue M (2002) HDL3 exerts a more powerful antiperoxidative and protective effect against peroxidative modification of LDL than HDL2 does. J Nutr Sci Vitaminol (Tokyo) 48:278–282

    Article  CAS  Google Scholar 

  36. Francis GA (2010) The complexity of HDL. Biochim Biophys Acta 1801:1286–1293

    Article  PubMed  CAS  Google Scholar 

  37. Nobecourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, Chapman MJ, Kontush A (2005) Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 48:529–538

    Article  PubMed  CAS  Google Scholar 

  38. Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, Ferrannini E, Reddy ST (2011) Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 60:2617–2623

    Article  PubMed  CAS  Google Scholar 

  39. Ragbir S, Farmer JA (2010) Dysfunctional high-density lipoprotein and atherosclerosis. Curr Atheroscler Rep 12:343–348

    Article  PubMed  CAS  Google Scholar 

  40. Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, Davidson M, Rysz J, Banach M (2012) Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res 51:314–324

    Article  PubMed  CAS  Google Scholar 

  41. Tellis CC, Tselepis AD (2009) The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta 1791:327–338

    Article  PubMed  CAS  Google Scholar 

  42. Gazi I, Lourida ES, Filippatos T, Tsimihodimos V, Elisaf M, Tselepis AD (2005) Lipoprotein-associated phospholipase A2 activity is a marker of small, dense LDL particles in human plasma. Clin Chem 51:2264–2273

    Article  PubMed  CAS  Google Scholar 

  43. Besler C, Heinrich K, Riwanto M, Luscher TF, Landmesser U (2010) High-density lipoprotein-mediated anti-atherosclerotic and endothelial-protective effects: a potential novel therapeutic target in cardiovascular disease. Curr Pharm Des 16:1480–1493

    Article  PubMed  CAS  Google Scholar 

  44. Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA (1996) Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 7:69–76

    Article  PubMed  CAS  Google Scholar 

  45. Mackness MI, Mackness B, Durrington PN (2002) Paraoxonase and coronary heart disease. Atheroscler 3:49–55

    Article  CAS  Google Scholar 

  46. Gazi IF, Tsimihodimos V, Tselepis AD, Elisaf M, Mikhailidis DP (2007) Clinical importance and therapeutic modulation of small dense low-density lipoprotein particles. Expert Opin Biol Ther 7:53–72

    Article  PubMed  CAS  Google Scholar 

  47. Gazi I, Tsimihodimos V, Filippatos T, Bairaktari E, Tselepis AD, Elisaf M (2006) Concentration and relative distribution of low-density lipoprotein subfractions in patients with metabolic syndrome defined according to the national cholesterol education program criteria. Metabolism 55:885–891

    Article  PubMed  CAS  Google Scholar 

  48. Dell’Omo G, Penno G, Del Prato S, Mariani M, Pedrinelli R (2009) Dysglycaemia in non-diabetic hypertensive patients: comparison of the impact of two different classifications of impaired fasting glucose on the cardiovascular risk profile. J Hum Hypertens 23:332–338

    Article  PubMed  Google Scholar 

  49. Ooi EM, Barrett PH, Chan DC, Watts GF (2008) Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 114:611–624

    Article  CAS  Google Scholar 

  50. Kei AA, Filippatos TD, Tsimihodimos V, Elisaf MS (2012) A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 61:906–921

    Article  PubMed  CAS  Google Scholar 

  51. Filippatos TD, Tsimihodimos V, Kostapanos M, Kostara C, Bairaktari E, Kiortsis DN, Tselepis AD, Elisaf M (2008) Small dense LDL cholesterol and apolipoproteins C-II and C-III in non-diabetic obese subjects with metabolic syndrome. Arch Med Sci 4:263–269

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Atherothrombosis Research Centre of the University of Ioannina for providing access to the laboratory equipments and facilities.

Conflict of interest

This study was conducted independently; no company or institution supported it financially. Some of the authors have given talks, attended conferences and participated in trials and advisory boards sponsored by various pharmaceutical companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses S. Elisaf.

About this article

Cite this article

Filippatos, T.D., Rizos, E.C., Tsimihodimos, V. et al. Small High-Density Lipoprotein (HDL) Subclasses are Increased with Decreased Activity of HDL-Associated Phospholipase A2 in Subjects with Prediabetes. Lipids 48, 547–555 (2013). https://doi.org/10.1007/s11745-013-3787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3787-1

Keywords

Navigation