Skip to main content
Log in

Celastrus orbiculatus Thunb. Decreases Athero-Susceptibility in Lipoproteins and the Aorta of Guinea Pigs Fed High Fat Diet

  • Original Article
  • Published:
Lipids

Abstract

Celastrus orbiculatus Thunb. (COT), a traditional Chinese herb, has anti-inflammatory and anti-oxidative properties. In this study, we examined the protective effect of COT on the initiation of atherosclerosis induced by high fat diet and explored the underlying mechanisms. We established guinea pig models of hyperlipidemia and treated them with three dosages of COT or 20 mg/kg/d simvastatin (a positive control drug) for 8 weeks. Plasma lipid analysis indicated that COT decreased total cholesterol (TC), non-high-density lipoprotein cholesterol (non-HDL-C), triglyceride (TG), apolipoprotein B100 (apoB100) and apolipoprotein E (apoE) levels and increased high density lipoprotein cholesterol (HDL-C) level. The analysis of the hepatic gene involving cholesterol metabolism by quantitative real-time PCR revealed that COT upregulated the mRNA abundance of LDL receptor (LDL-R), scavenger receptor class B type 1 (SR-B1), cholesterol 7α-hydroxylase A1 (CYP7A1) and the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Oil red O staining showed COT significantly reduced lipid deposition in the arterial wall. Moreover, ELISA assay revealed COT lowered the levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in plasma. Meanwhile, the level of Nitric oxide (NO) in plasma was increased by COT. Immunohistochemistry and Western blot analysis showed the expression of CD68 and active NF-kB p65 proteins in the arterial wall was decreased by COT. The content of Malondialdehyde (MDA) and activity of Superoxide dismutase (SOD) in plasma were determined and the data indicated COT suppressed oxidative stress reaction. These results reveal that administration of COT decreases athero-susceptibility through lowering plasma lipid, attenuating inflammation, and suppressing oxidative stress in guinea pig fed high fat diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

COT:

Celastrus orbiculatus Thunb

AS:

Atherosclerosis

TC:

Total cholesterol

TG:

Triglyceride

HDL-C:

High density lipoprotein cholesterol

LDL-C:

Low density lipoprotein cholesterol

apoB:

Apolipoprotein B

TNF-α:

Tumor necrosis factor-α

IL:

Interleukin

CRP:

C-reactive protein

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

LDL-R:

LDL receptor

SR-B1:

Scavenger receptor Class B Type 1

HMGCR:

3-hydroxy-3-methyl-glutaryl-CoA reductase

CYP7A1:

Cholesterol 7α-hydroxylase A1

NO:

Nitric oxide

References

  1. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  2. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  CAS  Google Scholar 

  3. Lazebnik LB, Ovsiannikova ON, Zvenigorodskaia LA, Mel’nikova NV, Samsonova NG, Khomeriki SG (2008) Cholesterosis of the gall bladder and atherogenic dyslipidemia: etiology, pathogenesis, clinical symptoms, diagnosis, and treatment. Ter Arkh 80:57–61

    PubMed  CAS  Google Scholar 

  4. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  5. Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-κB, an ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17

    PubMed  CAS  Google Scholar 

  6. Ridker PM, Stampfer MJ, Rifai N (2001) Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. J Am Med Assoc 285:2481–2485

    Article  CAS  Google Scholar 

  7. Jin HZ, Hwang BY, Kim HS, Lee JH, Kim YH, Lee JJ (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65:89–91

    Article  PubMed  CAS  Google Scholar 

  8. Chapman MJ, Mills GL, Ledford JH (1975) The distribution and partial characterization of the serum apolipoproteins in the guinea pig. Biochem J 149:423–436

    PubMed  CAS  Google Scholar 

  9. Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, Tall AR (1999) Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J Clin Invest 103:907–914

    Article  PubMed  CAS  Google Scholar 

  10. Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ (1993) Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun 191:1301–1308

    Article  PubMed  CAS  Google Scholar 

  11. Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257

    Article  PubMed  CAS  Google Scholar 

  12. Chen J, Zhao H, Ma X, Han X, Luo L, Wang L, Han J, Liu B, Wang W (2012) The effects of Jiang-Zhi-Ning and its main components on cholesterol metabolism. Evid Based Complement Alternat Med 2012:928234

    PubMed  Google Scholar 

  13. Nam KH, Choi JH, Seo YJ, Lee YM, Won YS, Lee MR, Lee MN, Park JG, Kim YM, Kim HC, Lee CH, Lee HK, Oh SR, Oh GT (2006) Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Exp Mol Med 38:445–452

    Article  PubMed  CAS  Google Scholar 

  14. Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264

    Article  PubMed  CAS  Google Scholar 

  15. Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H (2010) Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor- κB activation. J Pharmacol Sci 113:208–213

    Article  PubMed  CAS  Google Scholar 

  16. Tsutsui H (2006) Mitochondrial oxidative stress and heart failure. Intern Med 45:809–813

    Article  PubMed  Google Scholar 

  17. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    Article  PubMed  CAS  Google Scholar 

  18. Rudkowska I, Jones PJ (2007) Functional foods for the prevention and treatment of cardiovascular diseases: cholesterol and beyond. Expert Rev Cardiovasc Ther 5:477–490

    Article  PubMed  Google Scholar 

  19. Guo YQ, Li X, Lee JJ, Xu J, Li N, Meng DL, Wang JH (2006) A new sesquiterpene ester inhibiting no production from the fruits of Celastrus orbiculatus. J Asian Nat Prod Res 8:739–742

    Article  PubMed  CAS  Google Scholar 

  20. Blankstein R, Budoff MJ, Shaw LJ, Goff DC Jr, Polak JF, Lima J, Blumenthal RS, Nasir K (2011) Predictors of coronary heart disease events among asymptomatic persons with low low-density lipoprotein cholesterol MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 58:364–374

    Article  PubMed  CAS  Google Scholar 

  21. Gotto AM Jr (1995) Lipid lowering, regression, and coronary events. A review of the interdisciplinary council on lipids and cardiovascular risk intervention, Seventh Council meeting. Circulation 92:646–656

    Article  PubMed  Google Scholar 

  22. Spady DK, Cuthbert JA, Willard MN, Meidell RS (1996) Feedback regulation of hepatic 7alpha-hydroxylase expression by bile salts in the hamster. J Biol Chem 271:18623–18631

    Article  PubMed  CAS  Google Scholar 

  23. Grundy SM (2002) Low-density lipoprotein, non-high-density lipoprotein, and apolipoprotein B as targets of lipid-lowering therapy. Circulation 106:2526–2529

    Article  PubMed  Google Scholar 

  24. Garg R, Vasamreddy CR, Blumenthal RS (2005) Non-high-density lipoprotein cholesterol: why lower is better. Prev Cardiol 8:173–177

    Article  PubMed  CAS  Google Scholar 

  25. Shefer S, Nguyen LB, Salen G, Ness GC, Chowdhary IR, Lerner S, Batta AK, Tint GS (1992) Differing effects of cholesterol and taurocholate on steady state hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities and mRNA levels in the rat. J Lipid Res 33:1193–1200

    PubMed  CAS  Google Scholar 

  26. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    Article  PubMed  CAS  Google Scholar 

  27. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227–239

    Article  PubMed  Google Scholar 

  28. Brown MS, Goldstein JL (1981) Lowering plasma cholesterol by raising LDL receptors. N Engl J Med 305:515–517

    Article  PubMed  CAS  Google Scholar 

  29. Hampton R, Dimster-Denk D, Rine J (1996) The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 21:140–145

    PubMed  CAS  Google Scholar 

  30. Chiang JY, Kimmel R, Stroup D (2001) Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 262:257–265

    Article  PubMed  CAS  Google Scholar 

  31. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Article  PubMed  CAS  Google Scholar 

  32. Francisco G, Hernández C, Simó R (2006) Serum markers of vascular inflammation in dyslipemia. Clin Chim Acta 369:1–16

    Article  PubMed  CAS  Google Scholar 

  33. Basu SK, Brown MS, Ho YK, Havel RJ, Goldstein JL (1981) Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci USA 78:7545–7549

    Article  PubMed  CAS  Google Scholar 

  34. Wang CY, Chang TC (2004) Non-HDL cholesterol level is reliable to be an early predictor for vascular inflammation in type 2 diabetes mellitus. J Clin Endocrinol Metab 89:4762–4767

    Article  PubMed  CAS  Google Scholar 

  35. Ayaori M, Sawada S, Yonemura A, Iwamoto N, Ogura M, Tanaka N, Nakaya K, Kusuhara M, Nakamura H, Ohsuzu F (2006) Glucocorticoid receptor regulates ATP-binding cassette transporter-A1 expression and apolipoprotein-mediated cholesterol efflux from macrophages. Arterioscler Thromb Vasc Biol 26:163–168

    Article  PubMed  CAS  Google Scholar 

  36. Islam MS, Yoshida H, Matsuki N, Ono K, Nagasaka R, Ushio H, Guo Y, Hiramatsu T, Hosoya T, Murata T, Hori M, Ozaki H (2009) Antioxidant, free radical-scavenging, and NF-kappaB-inhibitory activities of phytosteryl ferulates: structure-activity studies. J Pharmacol Sci 111:328–337

    Article  PubMed  CAS  Google Scholar 

  37. Mudau M, Genis A, Lochner A, Strijdom H (2012) Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 23:222–231

    Article  PubMed  Google Scholar 

  38. Seppo L, Karjala K, Nevala R, Korpela R, Lähteenmäki T, Solatunturi E, Tikkanen MJ, Vapaatalo H (2000) A long-term fish diet modifies the toxic properties of human partially oxidized LDL on vascular preparations in vitro. J Physiol Pharmacol 51:251–265

    PubMed  CAS  Google Scholar 

  39. Vidal F, Colomé C, Martínez-González J, Badimon L (1998) Atherogenic concentrations of native low-density lipoproteins down-regulate nitric oxide synthase mRNA and protein levels in endothelial cells. Eur J Biochem 252:378–384

    Article  PubMed  CAS  Google Scholar 

  40. Fernandez ML, Yount NY, McNamara DJ (1990) Whole body cholesterol synthesis in the guinea pig: effects of dietary fat quality. Biochim Biophys Acta 1044:340–348

    Article  PubMed  CAS  Google Scholar 

  41. Grove D, Pownall HJ (1991) Comparative specificity of plasma lecithin: cholesterol acyltransferase from ten animal species. Lipids 26:416–420

    Article  PubMed  CAS  Google Scholar 

  42. Angelin B, Olivecrona H, Reihner H et al (1992) Hepatic cholesterol metabolism in estrogen-treated men. Gastroenterol 103:1657–1663

    CAS  Google Scholar 

  43. Reihner E, Angelin B, Rudling M, Ewerth S, Bjorkhem I, Einarsson K (1990) Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients. J Lipid Res 31:2219–2226

    PubMed  CAS  Google Scholar 

  44. Fernandez ML, Ruiz LR, Conde AK, Sun C-M, Erickson S, McNamara DJ (1995) Psyllium reduces plasma LDL in guinea pigs by altering hepatic cholesterol metabolism. J Lipid Res 36:1128–1138

    PubMed  CAS  Google Scholar 

  45. Reihner E, Angelin B, Bjorkhem I, Einarsson K (1991) Hepatic cholesterol metabolism in cholesterol gallstone disease. J Lipid Res 32:469–475

    PubMed  CAS  Google Scholar 

  46. Xiangdong L, Yuanwu L, Hua Z et al (2011) Animal models for the atherosclerosis research: a review. Protein Cell 2:189–201

    Article  PubMed  Google Scholar 

  47. Ensign WY, McNamara DJ, Fernandez ML (2002) Exercise improves plasma lipid profiles and modifies lipoprotein composition in guinea pigs. J Nutr Biochem 13:747–753

    Article  PubMed  CAS  Google Scholar 

  48. West Kristy L, Fernandez Maria Luz (2004) Guinea pigs as models to study the hypocholesterolemic effects of drugs. Cardiovasc Drug Rev 22:55–70

    Article  PubMed  CAS  Google Scholar 

  49. Puppione DL, Sardet C, Yamanaka W et al (1971) Plasma lipoproteins of cholesterol-fed guinea pigs. Biochim Biophys Acta 231:295–301

    Article  PubMed  CAS  Google Scholar 

  50. Wright JL, Churg A (2002) A model of tobacco smoke-induced airflow obstruction in the guinea pig 121(5 Suppl):188S–191S

    Google Scholar 

Download references

Acknowledgments

This research was supported by the financial donations from the Taishan scholar foundation of Shandong Province (200867) and the Natural Science Foundations of China (30971098 and 81070247), and the Special Research Funding of Taishan Medical University(2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shucun Qin.

Additional information

Y. Zhang, Y. Si and S. Yao contributed equally to this study.

About this article

Cite this article

Zhang, Y., Si, Y., Yao, S. et al. Celastrus orbiculatus Thunb. Decreases Athero-Susceptibility in Lipoproteins and the Aorta of Guinea Pigs Fed High Fat Diet. Lipids 48, 619–631 (2013). https://doi.org/10.1007/s11745-013-3773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3773-7

Keywords

Navigation