Skip to main content
Log in

Stereoselective Synthesis and NMR Characterization of C-24 Epimeric Pairs of 24-Alkyl Oxysterols

  • Methods
  • Published:
Lipids

Abstract

Two pairs of C-24 epimeric (24R)-/(24S)-24-hydroxy-24-methyl-5α-cholestan-3β-yl acetates and (24R)-/(24S)-25-hydroxy-24-methyl-5α-cholestan-3β-yl acetates as well as some related 24-ethyl oxysterol analogs were stereoselectively synthesized directly from the respective parent 24-alkyl sterols by a remote O-insertion reaction with 2,6-dichloropyridine N-oxide (DCP) in the presence of a catalytic amount of (5,10,15,20-tetramesitylporphrinate) ruthenium(II) carbonyl complex [Ru(TMP)CO] and HBr. 1H- and 13C-NMR signals serving to differentiate each of the two epimeric pairs were interpreted. The C-24 alkyl oxysterols epimeric at C-24 were found to be effectively characterized by the aromatic solvent-induced shift (ASIS) by C5D5N, particularly for the difference in the 13C resonances in the substituted cholestane side chain. A method for differentiating the 1H and 13C signal assignment of the terminal 26-/27-CH3 in the iso-octane side chain was also discussed on the basis of a combined use of the preferred conformational analysis and HMQC and HMBC techniques. The present method may be useful for determining the stereochemical configuration at C-24 of this type of 24-alkyl oxysterols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASIS:

Aromatic solvent-induced shift

LIS:

Lanthanide-induced shift

NMR:

Nuclear magnetic resonance

HMQC:

Heteronuclear multiple quantum coherence

HMBC:

Heteronuclear multiple bond correlation

DEPT:

Distortionless enhancement by polarization transfer

HR:

High resolution

ESI:

Electrospray ionization

MS:

Mass spectrometry

References

  1. Akihisa T, Kokke W (1991) Naturally occurring sterols and related compounds from plants In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. AOCS press, Champaign

  2. Derdemezis CS, Filippatos TD, Mikhailidis DP, Elisaf MS (2010) Effects of plant sterols and stanols beyond low-density lipoprotein cholesterol lowering. J Cardiovasc Pharmacol Ther 15:120–134

    Article  PubMed  CAS  Google Scholar 

  3. Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 96:7238–7243

    Article  PubMed  CAS  Google Scholar 

  4. Ren S, Hylemon P, Zhang ZP, Rodriguez-Agudo D, Marques D, Li X, Zhou H, Gil G, Pandak WM (2006) Identification of a novel sulfonated oxysterol, 5-cholesten-3β,25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria. J Lipid Res 47:1081–1090

    Article  PubMed  CAS  Google Scholar 

  5. Ren S, Li X, Rodriguez-Agudo D, Gil G, Hylemon P, Pandak WM (2007) Sulfated oxysterol, 25HC3S, is a potent regulator of lipid metabolism in human hepatocytes. Biochem Biophys Res Commun 360:802–808

    Article  PubMed  CAS  Google Scholar 

  6. Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, Yu J, Sutton SW, Qin N, Banie H, Karlsson L, Sun S, Lovenberg TW (2011) Oxysterols direct B-cell migration through EBI2. Nature 475:519–523

    Article  PubMed  CAS  Google Scholar 

  7. Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noel S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW (2011) Oxysterols direct immune cell migration via EBI2. Nature 475:524–527

    Article  PubMed  CAS  Google Scholar 

  8. Bjorkhem I (2002) Do oxysterols control cholesterol homeostasis? J Clin Invest 110:725–730

    PubMed  CAS  Google Scholar 

  9. Fourgeux C, Bron A, Acar N, Creuzot-Garcher C, Bretillon L (2011) 24S-Hydroxycholesterol and cholesterol-24S-hydroxylase (CYP46A1) in the retina: from cholesterol homeostasis to pathophysiology of glaucoma. Chem Phys Lipids 164:496–499

    Article  PubMed  CAS  Google Scholar 

  10. Cali JJ, Hsieh CL, Francke U, Russell DW (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266:7779–7783

    PubMed  CAS  Google Scholar 

  11. Russell DW (2000) Oxysterol biosynthetic enzymes. Biochim Biophys Acta 1529:126–135

    Article  PubMed  CAS  Google Scholar 

  12. Kanebratt KP, Diczfalusy U, Backstrom T, Sparve E, Bredberg E, Bottiger Y, Andersson TB, Bertilsson L (2008) Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4β-hydroxycholesterol. Clin Pharmacol Ther 84:589–594

    Article  PubMed  CAS  Google Scholar 

  13. Xu L, Korade Z, Rosado DA Jr, Liu W, Lamberson CR, Porter NA (2011) An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res 52:1222–1233

    Article  PubMed  CAS  Google Scholar 

  14. Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524

    Article  PubMed  CAS  Google Scholar 

  15. Wolozin B (2003) Cyp46 (24S-cholesterol hydroxylase): a genetic risk factor for Alzheimer disease. Arch Neurol 60:16–18

    Article  PubMed  Google Scholar 

  16. Ogawa S, Kakiyama G, Muto A, Hosoda A, Mitamura K, Ikegawa S, Hofmann AF, Iida T (2009) A facile synthesis of C-24 and C-25 oxysterols by in situ generated ethyl(trifluoromethyl)dioxirane. Steroids 74:81–87

    Article  PubMed  CAS  Google Scholar 

  17. Iida T, Yamaguchi T, Nakamori R, Hikosaka M, Mano N, Goto J, Nambara T (2001) A highly efficient, stereoselective oxyfunctionalization of unactivated carbons in steroids with dimethyldioxirane. J Chem Soc Perkin Trans 1:2229–2236

    Article  Google Scholar 

  18. Iida T, Ogawa S, Miyata S, Goto T, Mano N, Goto J, Nambara T (2004) Biomimetic oxidation of unactivated carbons in steroids by a model of cytochrome P-450, oxorutheniumporphyrinate complex. Lipids 39:873–880

    Article  CAS  Google Scholar 

  19. Ohtake H, Higuchi T, Hirobe M (1992) Highly efficient oxidation of alkanes and alkyl alcohols with heteroaromatic N-oxides catalyzed by ruthenium porphyrins. J Am Chem Soc 114:10660–10662

    Article  CAS  Google Scholar 

  20. Shingaki T, Miura K, Higuchi T, Hirobe M, Nagano T (1997) Regio- and stereo-selective oxidation of steroids using 2,6-dichloropyridine N-oxide catalysed by ruthenium porphyrins. Chem Commun 861–862

  21. Iida T, Kikuchi M, Tamura T, Matsumoto T (1977) Lanthanide and aromatic solvent-induced shift effects on proton resonances in C-4-methylated steroids and tetracyclic triterpenoids. Chem Phys Lipids 20:157–174

    Article  CAS  Google Scholar 

  22. Iida T, Tamura T, Matsumoto T (1980) Proton nuclear magnetic resonance identification and discrimination of side chain isomers of phytosterols using a lanthanide shift reagent. J Lipid Res 21:326–338

    PubMed  CAS  Google Scholar 

  23. Kirk DN, Toms HC, Douglas C, White KA, Smith KE, Latif S, Hubbard RWP (1990) A survey of the high-field 1H NMR spectra of the steroid hormones, their hydroxylated derivatives, and related compounds. J Chem Soc Perkin Trans 2:1567–1594

    Google Scholar 

  24. Blunt JW, Stothers JB (1977) 13C n.m.r. spectra of steroids—a survey and commentary. Org Magn Reson 9:439–464

    Article  CAS  Google Scholar 

  25. Goad LJ, Akihisa T (1997) 1H NMR spectroscopy of sterols. In: Analysis of sterols, chap 8. Blackie Academic & Professional, London, pp 197–234

  26. Goad LJ, Akihisa T (1997) 13C NMR spectroscopy of sterols. In: Analysis of sterols, chap 9. Blackie Academic & Professional, London, pp 235–255

  27. Rubinstein I, Goad LJ, Clague ADH, Mulheirn LJ (1976) The 220 MHz NMR spectra of phytosterols. Phytochem 15:195–200

    Article  CAS  Google Scholar 

  28. Wright JLC, McInnes AG, Shimizu S, Smith DG, Walter JA, Idler D, Khalil W (1978) Identification of C-24 alkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. Can J Chem 56:1898–1903

    Article  CAS  Google Scholar 

  29. Beierbeck H, Saunders JK (1976) A reinterpretation of beta, gamma, and delta substituent effects on 13C chemical shifts. Can J Chem 54:2985–2995

    Article  CAS  Google Scholar 

  30. Schwenzer GM (1978) Analysis of carbon-13 nuclear magnetic resonance for monohydroxy steroids incorporating geometric distortions. J Org Chem 43:1079–1083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Sciences and Technology of Japan (to T.I., 24550107) for 2012–2014 and for the Strategic Research Base Development Program for Private Universities subsidized MEXT 2009 (S0901022) for 2009–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Iida.

About this article

Cite this article

Ogawa, S., Kawamoto, H., Mitsuma, T. et al. Stereoselective Synthesis and NMR Characterization of C-24 Epimeric Pairs of 24-Alkyl Oxysterols. Lipids 48, 197–207 (2013). https://doi.org/10.1007/s11745-012-3739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3739-1

Keywords

Navigation