Skip to main content
Log in

Lipidomic Profiling of Chylomicron Triacylglycerols in Response to High Fat Meals

  • Original Article
  • Published:
Lipids

Abstract

Using lipidomic methodologies the impact that meal lipid composition and metabolic syndrome (MetS) exerts on the postprandial chylomicron triacylglycerol (TAG) response was examined. Males (9 control; 11 MetS) participated in a randomised crossover trial ingesting two high fat breakfast meals composed of either dairy-based foods or vegetable oil-based foods. The postprandial lipidomic molecular composition of the TAG in the chylomicron-rich (CM) fraction was analysed with tandem mass spectrometry coupled with liquid chromatography to profile CM TAG species and targeted TAG regioisomers. Postprandial CM TAG concentrations were significantly lower after the dairy-based foods compared with the vegetable oil-based foods for both control and MetS subjects. The CM TAG response to the ingested meals involved both significant and differential depletion of TAG species containing shorter- and medium-chain fatty acids (FA) and enrichment of TAG molecular species containing C16 and C18 saturated, monounsaturated and diunsaturated FA. Furthermore, there were significant changes in the TAG species between the food TAG and CM TAG and between the 3- and 5-h postprandial samples for the CM TAG regioisomers. Unexpectedly, the postprandial CM TAG concentration and CM TAG lipidomic responses did not differ between the control and MetS subjects. Lipidomic analysing of CM TAG molecular species revealed dynamic changes in the molecular species of CM TAG during the postprandial phase suggesting either preferential CM TAG species formation and/or clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CM:

Chylomicron-rich

FAME:

Fatty acid methyl esters

MetS:

Metabolic syndrome

MRM:

Multiple-reaction monitoring

TAG:

Triacylglycerol

AUC:

Area under the curve

MS:

Mass spectrometry

CM TAG:

Chylomicron triacylglycerol

PUFA:

Polyunsaturated fatty acid

FA:

Fatty acid

UPLC:

Ultra high performance liquid chromatography

ESI:

Electrospray ionization

APCI:

Atmospheric pressure chemical ionization

References

  1. Couillard C, Bergeron N, Prud’homme D, Bergeron J, Tremblay A, Bouchard C, Mauriege P, Despres JP (1999) Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 19:2448–2455

    Article  PubMed  CAS  Google Scholar 

  2. Koutsari C, Zagana A, Tzoras I, Sidossis LS, Matalas AL (2004) Gender influence on plasma triacylglycerol response to meals with different monounsaturated and saturated fatty acid content. Eur J Clin Nutr 58:495–502

    Article  PubMed  CAS  Google Scholar 

  3. Perez-Martinez P, Ordovas JM, Garcia-Rios A, Delgado-Lista J, Delgado-Casado N, Cruz-Teno C, Camargo A, Yubero-Serrano EM, Rodriguez F, Perez-Jimenez F, Lopez-Miranda J (2011) Consumption of diets with different type of fat influences triacylglycerols-rich lipoproteins particle number and size during the postprandial state. Nutr Metab Cardiovasc Dis 21:39–45

    Article  PubMed  CAS  Google Scholar 

  4. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316

    Article  PubMed  CAS  Google Scholar 

  5. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG (2008) Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA 300:2142–2152

    Article  PubMed  CAS  Google Scholar 

  6. Khoury DE, Hwalla N, Frochot V, Lacorte J-M, Chabert M, Kalopissis AD (2010) Postprandial metabolic and hormonal responses of obese dyslipidemic subjects with metabolic syndrome to test meals, rich in carbohydrate, fat or protein. Atherosclerosis 210:307–313

    Article  PubMed  Google Scholar 

  7. Tushuizen ME, Pouwels PJ, Bontemps S, Rustemeijer C, Matikainen N, Heine RJ, Taskinen M-R, Diamant M (2010) Postprandial lipid and apolipoprotein responses following three consecutive meals associate with liver fat content in type 2 diabetes and the metabolic syndrome. Atherosclerosis 211:308–314

    Article  PubMed  CAS  Google Scholar 

  8. Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi F (2005) Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr 82:523–530

    PubMed  CAS  Google Scholar 

  9. Pereira MA, Jacobs DR Jr, Van Horn L, Slattery ML, Kartashov AI, Ludwig DS (2002) Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 287:2081–2089

    Article  PubMed  Google Scholar 

  10. Gunstone FD, Harwood JL (2007) Occurrence and characterisation of oils and fats. In: Gunstone FD, Harwood JL, Dijkstra AJ (eds) The lipid handbook. CRC Press, Taylor and Francis Group, Florida, pp 37–141

    Google Scholar 

  11. Karupaiah T, Sundram K (2007) Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications. Nutr Metab 4:16

    Article  Google Scholar 

  12. St-Onge M-P, Jones PJH (2002) Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 132:329–332

    PubMed  CAS  Google Scholar 

  13. Mekki N, Charbonnier M, Borel P, Leonardi J, Juhel C, Portugal H, Lairon D (2002) Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132:3642–3649

    PubMed  CAS  Google Scholar 

  14. Thomsen C, Rasmussen O, Lousen T, Holst JJ, Fenselau S, Schrezenmeir J, Hermansen K (1999) Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 69:1135–1143

    PubMed  CAS  Google Scholar 

  15. Berry SEE (2009) Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr Res Rev 22:3–17

    Article  PubMed  CAS  Google Scholar 

  16. Jensen MM, Christensen MS, Hoy CE (1994) Intestinal absorption of octanoic, decanoic, and linoleic acids: effect of triglyceride structure. Ann Nutr Metab 38:104–116

    Article  PubMed  CAS  Google Scholar 

  17. Yli-Jokipii KM, Schwab US, Tahvonen RL, Xu X, Mu H, Kallio HPT (2004) Positional distribution of decanoic acid: effect on chylomicron and VLDL TAG structures and postprandial lipemia. Lipids 39:373–381

    Article  PubMed  CAS  Google Scholar 

  18. Berner LA (1993) Roundtable discussion on milkfat, dairy foods, and coronary heart disease risk. J Nutr 123:1175–1184

    PubMed  CAS  Google Scholar 

  19. Elwood PC, Pickering JE, Fehily AM (2007) Milk and dairy consumption, diabetes and the metabolic syndrome: the Caerphilly prospective study. J Epidemiol Community Health 61:695–698

    Article  PubMed  Google Scholar 

  20. Michalski M-C (2009) Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia. Eur J Lipid Sci Technol 111:413–431

    Article  CAS  Google Scholar 

  21. Mills S, Ross RP, Hill C, Fitzgerald GF, Stanton C (2011) Milk intelligence: mining milk for bioactive substances associated with human health. Int Dairy J 21:377–401

    Article  CAS  Google Scholar 

  22. Abia R, Perona JS, Pacheco YM, Montero E, Muriana FJ, Ruiz-Gutierrez V (1999) Postprandial triacylglycerols from dietary virgin olive oil are selectively cleared in humans. J Nutr 129:2184–2191

    PubMed  CAS  Google Scholar 

  23. Yli-Jokipii KM, Schwab US, Tahvonen RL, Kurvinen J-P, Mykkänen HM, Kallio HPT (2003) Chylomicron and VLDL TAG structures and postprandial lipid response induced by lard and modified lard. Lipids 38:693–703

    Article  PubMed  CAS  Google Scholar 

  24. Yli-Jokipii KM, Schwab US, Tahvonen RL, Kurvinen J-P, Mykkänen HM, Kallio HPT (2002) Triacylglycerol molecular weight and to a lesser extent, fatty acid positional distribution, affect chylomicron triacylglycerol composition in women. J Nutr 132:924–929

    PubMed  CAS  Google Scholar 

  25. International Diabetes Federation (2011) The IDF consensus worldwide definition of the metabolic syndrome. Accessed Sep 2011. http://www.idf.org/webdata/docs/MetS_def_update2006.pdf

  26. Ågren JJ, Hallikainen M, Vidgren H, Miettinen TA, Gylling H (2006) Postprandial lipemic response and lipoprotein composition in subjects with low or high cholesterol absorption efficiency. Clin Chim Acta 366:309–315

    Article  PubMed  Google Scholar 

  27. Folch J, Lees M, Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  28. Hamilton J, Comai K (1988) Rapid separation of neutral lipids, free fatty acids and polar lipids using prepacked silica Sep-Pak columns. Lipids 23:1146–1149

    Article  PubMed  CAS  Google Scholar 

  29. Ågren JJ, Julkunen A, Penttilä I (1992) Rapid separation of serum lipids for fatty acid analysis by a single aminopropyl column. J Lipid Res 33:1871–1876

    PubMed  Google Scholar 

  30. Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM (2007) Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal Biochem 366:59–70

    Article  PubMed  CAS  Google Scholar 

  31. Leskinen HM, Suomela J-P, Kallio HP (2010) Quantification of triacylglycerol regioisomers by ultra-high-performance liquid chromatography and ammonia negative ion atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1–5

    Article  PubMed  CAS  Google Scholar 

  32. Houge J-C, Lamarche B, Tremblay AJ, Bergeron J, Gagne C, Couture P (2007) Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes. J Lipid Res 48:1336–1342

    Article  Google Scholar 

  33. Yli-Jokipii K, Kallio H, Schwab U, Mykkänen H, Kurvinen JP, Savolainen MJ, Tahvonen R (2001) Effects of palm oil and transesterified palm oil on chylomicron and VLDL triacylglycerol structures and postprandial lipid response. J Lipid Res 42:1618–1625

    PubMed  CAS  Google Scholar 

  34. Sutherland WHF, de Jong SA, Walker RJ (2007) Effect of dietary cholesterol and fat on cell cholesterol transfer to postprandial plasma in hyperlipidemic men. Lipids 42:901–911

    Article  PubMed  CAS  Google Scholar 

  35. Adiels M, Matikainen N, Westerbacka J, Söderlund S, Larsson T, Olofsson SO, Borén J, Taskinen MR (2012) Postprandial accumulation of chylomicrons and chylomicron remnants is determined by the clearance capacity. Atherosclerosis 222:222–228

    Article  PubMed  CAS  Google Scholar 

  36. Mu H, Porsgaard T (2005) The metabolism of structured triacylglycerols. Prog Lipid Res 44:430–448

    Article  PubMed  CAS  Google Scholar 

  37. Swift LL, Hill JO, Peters JC, Greene HL (1990) Medium-chain fatty acids: evidence for incorporation into chylomicron triglycerides in humans. Am J Clin Nutr 52:834–836

    PubMed  CAS  Google Scholar 

  38. Lorenzen JK, Nielsen S, Holst JJ, Tetens I, Rehfeld JF, Astrup A (2007) Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr 85:678–687

    PubMed  CAS  Google Scholar 

  39. Lorenzen J, Astrup A (2011) Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br J Nutr 31:1–10

    Google Scholar 

  40. Heaney PR, Dowell MS, Rafferty K, Bierman J (2000) Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am J Clin Nutr 71:1166–1169

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Andrew Garnham for his medical support. The authors gratefully acknowledge Cabrini pathologies and Baker IDI for analyses of samples and Thorsten Kasel for his assistance with the clinical trial. Lastly we wish to acknowledge and thank our participants. This project was supported with funding from the Dairy Health and Nutrition Consortium (DHNC). The DHNC is a consortium of Tatura Milk Industries and Bega Cheese, National Foods, Fonterra Australia, Parmalat Australia, Dairy Australia, Geoffrey Gardiner Foundation, Murray Goulburn Co‐operative, Warrnambool Cheese and Butter Factory, and Dairy Innovation Australia.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxine P. Bonham.

About this article

Cite this article

Bonham, M.P., Linderborg, K.M., Dordevic, A. et al. Lipidomic Profiling of Chylomicron Triacylglycerols in Response to High Fat Meals. Lipids 48, 39–50 (2013). https://doi.org/10.1007/s11745-012-3735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3735-5

Keywords

Navigation