Skip to main content
Log in

Transcriptional Regulation of Desaturase Genes in Pichia pastoris GS115

  • Original Article
  • Published:
Lipids

Abstract

Here we investigated the regulation of Pichia pastoris desaturase genes by low temperature and exogenous fatty acids in the late-exponential phase at the transcriptional level. Time-course studies of gene expression showed that mRNA levels of four desaturase genes were rapidly and transiently enhanced by low temperature and suppressed by exogenous oleic acid. Stearic acid showed no obvious repression of mRNA levels of Fad12 and Fad15 and a slight increase in Fad9A and Fad9B mRNA levels. Using a promoter–reporter gene construct, we demonstrated that the pFAD15 promoter activity was induced by low temperature in a time-dependent manner and reduced in a dose- and time-dependent manner by unsaturated fatty acids. Also, there was no absolute correlation between mRNA abundance and production of corresponding fatty acids. Disruption of Spt23 resulted in a decrease in transcript levels of Fad9A and Fad9B, but had little effect on the other desaturase genes. Consistent with these observations, a decrease in the relative amount of oleic acid (OLA) and an increase in the relative content of linoleic acid and ALA with different degrees were clearly observed in the stationary phase cells of ΔSpt23 mutant. Further analysis showed that the effect of low-temperature activation and OLA inhibition on expression of Fad9A and Fad9B seemed to disappear after disruption of the Spt23 gene, which indicated that Spt23p is essential for the expression of two Δ9-desaturase genes internally and probably involved in the regulation of Δ9-desaturase genes transcription in response to external stimuli, and thereby plays a role in the synthesis of OLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid (C183n-3)

LNA:

Linoleic acid (C18:2n-6)

OLA:

Oleic acid (C18:1n-9)

PAM:

Palmitic acid (C16:0)

PUFA:

Polyunsaturated fatty acid(s)

SFA:

Saturated fatty acid(s)

STA:

Stearic acid (C18:0)

UFA:

Unsaturated fatty acid(s)

References

  1. Tapiero H, Nguyen Ba G, Couvreur P, Tew K (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56:215–222

    Article  PubMed  CAS  Google Scholar 

  2. Calder PC, Yaqoob P (2009) Omega-3 polyunsaturated fatty acids and human health outcomes. Biofactors 35:266–272

    Article  PubMed  CAS  Google Scholar 

  3. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  PubMed  CAS  Google Scholar 

  4. Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H (2010) Improvement of polyunsaturated fatty acids synthesis by the coexpression of CYB5 with desaturase genes in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:2185–2193

    Article  PubMed  CAS  Google Scholar 

  5. Kang DH, Anbu P, Kim WH, Hur BK (2008) Coexpression of Elo-like enzyme and Δ5, Δ4-desaturases derived from Thraustochytrium aureum ATCC 34304 and the production of DHA and DPA in Pichia pastoris. Biotechnol Bioprocess Eng 13:483–490

    Article  CAS  Google Scholar 

  6. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, De Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691

    Article  PubMed  CAS  Google Scholar 

  7. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  PubMed  CAS  Google Scholar 

  8. Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ et al (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 158:259–271

    Article  PubMed  CAS  Google Scholar 

  9. Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713

    Article  PubMed  CAS  Google Scholar 

  10. McDonough V, Stukey J, Martin C (1992) Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 267:5931–5936

    PubMed  CAS  Google Scholar 

  11. Fujiwara D, Yoshimoto H, Sone H, Harashima S, Tamai Y (1998) Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and Δ-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14:711–721

    Article  PubMed  CAS  Google Scholar 

  12. Kwast KE, Burke PV, Staahl BT, Poyton RO (1999) Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc Natl Acad Sci USA 96:5446–5451

    Article  PubMed  CAS  Google Scholar 

  13. Vasconcelles MJ, Jiang Y, McDaid K, Gilooly L, Wretzel S et al (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. J Biol Chem 276:14374–14384

    PubMed  CAS  Google Scholar 

  14. Ter Linde J, Liang H, Davis R, Steensma H, Van Dijken J et al (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181:7409–7413

    PubMed  Google Scholar 

  15. Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151:473–483

    PubMed  CAS  Google Scholar 

  16. Zhang S, Burkett TJ, Yamashita I, Garfinkel DJ (1997) Genetic redundancy between SPT23 and MGA2: regulators of Ty-induced mutations and Ty1 transcription in Saccharomyces cerevisiae. Mol Cell Biol 17:4718–4729

    PubMed  CAS  Google Scholar 

  17. Jiang Y, Vasconcelles MJ, Wretzel S, Light A, Gilooly L et al (2002) Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression. Eukaryot Cell 1:481–490

    Article  PubMed  CAS  Google Scholar 

  18. Chellappa R, Kandasamy P, Oh CS, Jiang Y, Vemula M et al (2001) The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. J Biol Chem 276:43548–43556

    Article  PubMed  CAS  Google Scholar 

  19. Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD et al (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577–586

    Article  PubMed  CAS  Google Scholar 

  20. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  PubMed  CAS  Google Scholar 

  21. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  PubMed  CAS  Google Scholar 

  22. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  PubMed  Google Scholar 

  23. Hill JE, Myers AM, Koerner T, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    Article  PubMed  CAS  Google Scholar 

  24. Sears IB, O’Connor J, Rossanese OW, Glick BS (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14:783–790

    Article  PubMed  CAS  Google Scholar 

  25. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  26. Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    Article  PubMed  CAS  Google Scholar 

  27. Kaan T, Homuth G, Mäder U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:3441–3455

    PubMed  CAS  Google Scholar 

  28. Khoomrung S, Laoteng K, Jitsue S, Cheevadhanarak S (2008) Significance of fatty acid supplementation on profiles of cell growth, fatty acid, and gene expression of three desaturases in Mucor rouxii. Appl Microbiol Biot 80:499–506

    Article  CAS  Google Scholar 

  29. Cheawchanlertfa P, Cheevadhanarak S, Tanticharoen M, Maresca B, Laoteng K (2011) Up-regulated expression of desaturase genes of Mucor rouxii in response to low temperature associates with pre-existing cellular fatty acid constituents. Mol Biol Rep 38:3455–3462

    Article  PubMed  CAS  Google Scholar 

  30. Jiang Y, Vasconcelles MJ, Wretzel S, Light A, Martin CE et al (2001) MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:6161–6169

    Article  PubMed  CAS  Google Scholar 

  31. Mansilla MC, Cybulski LE, Albanesi D, De Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

    Article  PubMed  CAS  Google Scholar 

  32. Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA (1997) Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiol Lett 152:313–320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30771355, 31270096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chun Li.

About this article

Cite this article

Yu, AQ., Shi, TL., Zhang, B. et al. Transcriptional Regulation of Desaturase Genes in Pichia pastoris GS115. Lipids 47, 1099–1108 (2012). https://doi.org/10.1007/s11745-012-3712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3712-z

Keywords

Navigation