Skip to main content

trans-10,cis-12 Conjugated Linoleic Acid Enhances Endurance Capacity by Increasing Fatty Acid Oxidation and Reducing Glycogen Utilization in Mice

Abstract

The supplementation of conjugated linoleic acid (CLA) has been shown to improve endurance by enhancing fat oxidation during exercise in rodents and humans. This study was designed to investigate the isomer-specific effects of CLA on endurance capacity and energy metabolism in mice during exercise. Male 129Sv/J mice were divided into three dietary groups and fed treatment diet for 6 weeks; control, 0.5 % cis-9,trans-11 (c9,t11) CLA, or 0.5 % trans-10,cis-12 (t10,c12) CLA. Dietary t10,c12 CLA induced a significant increase in maximum running time and distance until exhaustion with a dramatic reduction of total adipose depots compared to a control group, but there were no significant changes in endurance with the c9,t11 CLA treatment. Serum triacylglycerol and non-esterified fatty acid concentrations were significantly lower in the t10,c12 fed mice after exercise compared to control and the c9,t11 CLA fed-animals. Glycogen contents in livers of the t10,c12 fed-mice were higher than those in control mice, concomitant with reduction of serum l-lactate level. There were no differences in non-exercise physical activity among all treatment groups. In addition, the mRNA expression levels of carnitine palmitoyl transferase 1β, uncoupling protein 2 and peroxisome proliferator-activated receptor δ (PPARδ) in skeletal muscle during exercise were significantly up-regulated by the t10,c12 CLA but not the c9,t11 CLA. These results suggest that the t10,c12 CLA is responsible for improving endurance exercise capacity by promoting fat oxidation with a reduction of the consumption of stored liver glycogen, potentially mediated via PPARδ dependent mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AMPK:

AMP-activated protein kinase

BUN:

Blood urea nitrogen

CLA:

Conjugated linoleic acid

CPT1β:

Carnitine palmitoyl transferase 1β

IL-6:

Interleukin 6

LPL:

Lipoprotein lipase

NEFA:

Non-esterified fatty acid

NEPA:

Non-exercise physical activity

PPARδ:

Peroxisome proliferator-activated receptor δ

TAG:

Triacylglycerol

UCP2:

Uncoupling protein 2

References

  1. Mancini D, Benaminovitz A, Cordisco ME, Karmally W, Weinberg A (1999) Slowed glycogen utilization enhances exercise endurance in patients with heart failure. J Am Coll Cardiol 34:1807–1812

    Article  PubMed  CAS  Google Scholar 

  2. Jung K, Kim IH, Han D (2004) Effect of medicinal plant extracts on forced swimming capacity in mice. J Ethnopharmacol 93:75–81

    Article  PubMed  Google Scholar 

  3. Fushiki T, Matsumoto K, Inoue K, Kawada T, Sugimoto E (1995) Swimming endurance capacity is increases by chronic consumption of medium-chain triglycerides. J Nutr 125:531–539

    PubMed  CAS  Google Scholar 

  4. Rahman SM, Wang YM, Yotsumoto H, Cha JY, Han SY, Inoue S, Yanagita T (2001) Effects of conjugated linoleic acid on serum leptin concentration, body-fat accumulation, and β-oxidation of fatty acid in OLETF rats. Nutrition 17:385–390

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy SR, Leaver MJ, Campbell PJ, Zheng X, Dick JR, Tocher DR (2006) Influence of dietary oil content and conjugated linoleic acid (CLA) on lipid metabolism enzyme activities and gene expression in tissues of Atlantic salmon (Salmo salar L.). Lipids 41(5):423–436

    Article  PubMed  CAS  Google Scholar 

  6. Mizunoya W, Haramizu S, Shibakusa T, Okabe Y, Fushiki T (2005) Dietary conjugated linoleic acid increases endurance capacity and fat oxidation in mice during exercise. Lipids 40:265–271

    Article  PubMed  CAS  Google Scholar 

  7. Kim JH, Park HG, Pan JH, Kim SH, Yoon HG, Bae GS, Lee H, Eom S-H, Kim YJ (2010) Dietary conjugated linoleic acid increases endurance capacity of mice during treadmill exercise. J Med Food 13(5):1057–1060

    Article  PubMed  CAS  Google Scholar 

  8. Park Y, Pariza MW (2007) Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res Int 40:311–323

    Article  CAS  Google Scholar 

  9. Park Y, Storkson JM, Albright KJ, Liu W, Pariza W (1999) Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34:235–241

    Article  PubMed  CAS  Google Scholar 

  10. Ribot J, Portillo MP, Picó C, Teresa Macarulla M, Palou A (2007) Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet. Br J Nutr 97:1074–1082

    Article  PubMed  CAS  Google Scholar 

  11. Fueger PT, Shearer J, Krueger TM, Posey KA, Bracy DP, Heikkinen S, Laakso M, Rottman JF, Wasserman DH (2005) Hexokinase II protein content is a determinant of exercise endurance capacity in the mouse. J Physiol 566(2):533–541

    Article  PubMed  CAS  Google Scholar 

  12. Lightfoot JT, Turner MJ, Knab AK, Jedlicka AE, Oshimura T, Marzec J, Gladwell W, Leamy LJ, Kleeberger SR (2007) Quantitative trait loci associated with maximal exercise endurance in mice. J Appl Physiol 103:105–110

    Article  PubMed  CAS  Google Scholar 

  13. Koch LG, Meredith TA, Fraker TD, Metting PJ, Britton SL (1998) Heritability of treadmill running endurance in rats. Am J Physiol 275:R1455–R1460

    PubMed  CAS  Google Scholar 

  14. Milliken GA, Johnson DE (2002) Analysis of covariance. In: Analysis of messy data, vol III. Chapman and Hall/CRC Press, Boca Raton, pp 123–160

  15. de Deckere EA, van Amelsvoort JM, McNeill GP, Jones P (1999) Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br J Nutr 82(4):309–317

    PubMed  Google Scholar 

  16. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez C, Hansson O, Nevsten P, Holm C, Klint C (2008) Hormone-sensitive lipase is necessary for normal mobilization of lipids during submaximal exercise. Am J Physiol Endocrinol Metab 295:E179–E186

    Article  PubMed  CAS  Google Scholar 

  18. Pederson BA, Cope CR, Schroeder JM, Smith MW, Irimia JM, Thurberg BL, DePaoli-Roach AA, Roach PJ (2005) Exercise capacity of mice genetically lacking muscle glycogen synthase. J Biol Chem 280(17):17260–17265

    Article  PubMed  CAS  Google Scholar 

  19. Kasuga M, Ogawa W, Ohara T (2003) Tissue glycogen content and glucose intolerance. J Clin Investig 111:1282–1284

    PubMed  CAS  Google Scholar 

  20. Hribal ML, Oriente F, Accili D (2002) Mouse models of insulin resistance. Am J Physiol Endocrinol Metab 282(5):E977–E981

    PubMed  CAS  Google Scholar 

  21. Hamada T, Arias EB, Cartee GD (2006) Increased submaximal insulin-stimulated glucose uptake in mouse skeletal muscle after treadmill exercise. J Appl Physiol 101:1368–1376

    Article  PubMed  CAS  Google Scholar 

  22. Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA 98:1416–1421

    Article  PubMed  CAS  Google Scholar 

  23. Son C, Hosoda K, Matsuda J, Fujikura J, Yonemitsu S, Iwakura H, Masuzaki H, Ogawa Y, Hayashi T, Itoh H, Nishimura H, Inoue G, Yoshimasa Y, Yamori Y, Nakao K (2001) Up-regulation of uncoupling protein 3 gene expression by fatty acids and agonists for PPARs in L6 myotubes. Endocrinology 142:4189–4194

    Article  PubMed  CAS  Google Scholar 

  24. Faldt J, Wernstedt I, Fitzgerald SM, Wallenius K, Bergstrom G, Jansson JO (2004) Reduced exercise endurance in interleukin-6-deficient mice. Endocrinology 145(6):2680–2686

    Article  PubMed  Google Scholar 

  25. Chung S, Brown JM, Provo JN, Hopkins R, McIntosh MK (2005) Conjugated linoleic acid promotes human adipocyte insulin resistance through NFκB-dependent cytokine production. J Biol Chem 280(46):38445–38456

    Article  PubMed  CAS  Google Scholar 

  26. Krämer DK, Al-Khalili L, Guigas B, Leng Y, Garcia-Roves PM, Krook A (2007) Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem 282(27):19313–19320

    Article  PubMed  Google Scholar 

  27. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2(10):e294

    Article  PubMed  Google Scholar 

  28. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134(3):405–415

    Article  PubMed  CAS  Google Scholar 

  29. Canto C, Auwerx J (2010) AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 67:3407–3423

    Article  PubMed  CAS  Google Scholar 

  30. Matsakas A, Narkar VA (2010) Endurance exercise mimetics in skeletal muscle. Curr Sports Med Rep 9(4):227–232

    PubMed  Google Scholar 

  31. Parra P, Serra F, Palou A (2012) Transcriptional analysis reveals a high impact of conjugated linoleic acid on stearoyl-coenzyme A desaturase 1 mRNA expression in mice gastrocnemius muscle. Genes Nutr. doi:10.1007/s12263-011-0279-x

  32. Amengual J, Ribot J, Bonet ML, Palou A (2008) Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice. Obesity 16(3):585–591

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100(26):15924–15929

    Article  PubMed  CAS  Google Scholar 

  34. Terpstra AH, Javadi M, Beynen AC, Kocsis S, Lankhorst AE, Lemmens AG, Mohede ICM (2003) Dietary conjugated linoleic acids as free fatty acids and triacylglycerols similarly affect body composition and energy balance in mice. J Nutr 133:3181–3186

    PubMed  CAS  Google Scholar 

  35. Nagao K, Wang YM, Inoue N, Han SY, Buang Y, Noda T, Kouda N, Okamatsu H, Yanagita T (2003) The 10trans, 12cis isomer of conjugated linoleic acid promotes energy metabolism in OLETF rats. Nutrition 19:652–656

    Article  PubMed  CAS  Google Scholar 

  36. Peters JM, Park Y, Gonzalez FJ, Pariza MW (2001) Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor alpha-null mice. Biochim Biophys Acta 1533:233–242

    Article  PubMed  CAS  Google Scholar 

  37. Choi JS, Jung MH, Park HS, Song J (2004) Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed rats. Nutrition 20:1008–1017

    Article  PubMed  CAS  Google Scholar 

  38. Ohnuki K, Haramizu S, Oki K, Ishihara K, Fushiki T (2001) A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice. Lipids 36:583–587

    Article  PubMed  CAS  Google Scholar 

  39. Park Y, Park Y (2012) Conjugated fatty acids increase energy expenditure in part by increasing voluntary movement in mice. Food Chem 133:400–409

    Article  CAS  Google Scholar 

  40. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O (2000) Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr 130:2943–2948

    PubMed  CAS  Google Scholar 

  41. Pinkoski C, Chilibeck PD, Candow DG, Esliger D, Ewaschuk JB, Facci M, Farthing JP, Zello GA (2006) The effects of conjugated linoleic acid supplementation during resistance training. Med Sci Sports Exerc 38(2):339–348

    Article  PubMed  CAS  Google Scholar 

  42. Tarnopolsky M, Zimmer A, Paikin J, Safdar A, Aboud A, Pearce E, Roy B, Doherty D (2007) Creatine monohydrate and conjugated linoleic acid improve strength and body composition following resistance exercise in older adults. PLoS One 10:e991

    Article  Google Scholar 

  43. Cornish SM, Candow DG, Jantz NT, Chilibeck PD, Little JP, Forbes S, Abeysekara S, Zello GA (2009) Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr Exerc Metab 19(1):79–96

    PubMed  CAS  Google Scholar 

  44. Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL (2002) Effects of conjugated linoleic acid supplementation during resistance training on body composition, body density, strength and selected hematologic markers. J Strength Cond Res 16:325–334

    PubMed  Google Scholar 

  45. Colakoglu S, Colakoglu M, Taneli F, Cetinoz F, Turkmen M (2006) Cumulative effects of conjugated linoleic acid and exercise on endurance development, body composition, serum leptin and insulin levels. J Sports Med Phys Fit 46:570–577

    CAS  Google Scholar 

  46. Diaz ML, Watkins BA, Li Y, Anderson RA, Campbell WW (2008) Chromium picolinate and conjugated linoleic acid do not synergistically influence diet- and exercise-induced changes in body composition and health indexes in overweight women. J Nutr Biochem 19:61–68

    Article  PubMed  CAS  Google Scholar 

  47. Oh TW, Ohta F (2003) Dose-dependent effect of capsaicin on endurance capacity in rats. Br J Nutr 90:515–520

    Article  PubMed  CAS  Google Scholar 

  48. Murase T, Haramizu S, Shimotoyodome A, Nagasawa A, Tokimitsu I (2005) Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am J Physiol Regul Integr Comp Physiol 288:R708–R715

    Article  PubMed  CAS  Google Scholar 

  49. Minegishi Y, Haramizu S, Hase T, Murase T (2011) Red grape leaf extract improves endurance capacity by facilitating fatty acid utilization in skeletal muscle in mice. Eur J Appl Physiol 111:1983–1989

    Article  PubMed  CAS  Google Scholar 

  50. Pariza MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79:1132S–1136S

    PubMed  CAS  Google Scholar 

  51. Clement L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    Article  PubMed  CAS  Google Scholar 

  52. Poirier H, Niot I, Clement L, Guerre-Millo M, Besnard P (2005) Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouse. Biochimie 87:73–79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Daeyoung Kim at the Department of Mathematics and Statistics, University of Massachusetts, Amherst for help with statistical assistance. We also thank Ms. Jayne M. Storkson for help preparing this manuscript and Ms. Dayeh Lee and Eunji Choi for assistance with the experiments. This material is based up on work supported by the National Institute of Food and Agriculture, US Department of Agriculture, the Massachusetts Agricultural Experimental Station and the Department of Food Science under Project No. MAS0201001529. Dr. Yeonhwa Park is one of the inventors of CLA use patents that are assigned to the Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonhwa Park.

About this article

Cite this article

Kim, J.H., Kim, J. & Park, Y. trans-10,cis-12 Conjugated Linoleic Acid Enhances Endurance Capacity by Increasing Fatty Acid Oxidation and Reducing Glycogen Utilization in Mice. Lipids 47, 855–863 (2012). https://doi.org/10.1007/s11745-012-3698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3698-6

Keywords

  • Conjugated linoleic acid
  • Exercise
  • Fat oxidation
  • Endurance
  • Mice