Skip to main content
Log in

Myocardial Infarction Changes Sphingolipid Metabolism in the Uninfarcted Ventricular Wall of the Rat

  • Original Article
  • Published:
Lipids

Abstract

It is known that the ratio, the level of sphingosine-1-phosphate (S1P)/the level of ceramide (CER) determines survival of the cells. The aim of the present study was to examine the effect of myocardial infarction on the level of different sphingolipids in the uninfarcted area. The experiments were carried out on male Wistar rats: 1, control; 2, after ligation of the left coronary artery (infarct) and 3, sham operated. Samples of the uninfarcted area of the left ventricle were taken in 1, 6 and 24 h after the surgery. The level of sphingolipids, S1P, CER, sphingosine (SPH), sphinganine-1-phosphate (SPA1P) and sphinganine (SPA) was determined. The control values were (ng/mg), S1P-0.33 ± 0.03, SPH-1.02 ± 0.13, SPA1P-0.11 ± 0.01, SPA-0.28 ± 0.04, total CER-20.3 ± 1.8. In infarct, the level of S1P in the uninfarcted area was reduced by ~3 times in 1 and 6 h and decreased further in 24 h. The level of SPH decreased in 1 h and returned to the control thereafter. The total level of CER decreased in 6 h after the infarction. Sham surgery also produced changes in the level of certain sphingolipids. The ratio, the level of S1P/the level of CER was markedly reduced at each time point after the infarction. It is concluded that the reduction in the S1P/CER ratio could be responsible for increased apoptosis in the uninfarcted area after the myocardial infarction in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

S1P:

Sphingosine-1-phosphate

CER:

Ceramide

SPH:

Sphingosine

SPA1P:

Sphinganine-1-phosphate

SPA:

Sphinganine

References

  1. Karliner JS (2009) Sphingosine kinase and sphingosine-1-phosphate in cardioprotection. J Cardiovasc Pharmacol 53:189–197. doi:10.1097/FJC.0b013e3181926706

    Article  PubMed  CAS  Google Scholar 

  2. Kennedy S, Kane KA, Pyne NJ, Pyne S (2009) Targeting sphingosine-1-phosphate signalling for cardioprotection. Curr Opinion Pharmacol 9:194–201. doi:10.1016/j.coph.2008.11.002

    Article  CAS  Google Scholar 

  3. Knapp M (2011) Cardioprotective role of sphingosine-1-phosphate. J Physiol Pharmacol 62:601–607

    PubMed  CAS  Google Scholar 

  4. Gundewar S, Lefer DJ (2008) Sphingolipid therapy in myocardial ischemia-reperfusion injury. Biochim Biophys Acta 1780:571–576. doi:10.1016/j.bbagen.2007.08.014

    Article  PubMed  CAS  Google Scholar 

  5. Vessey DA, Kelley M, Li L, Huang Y, Zhou HZ, Zhu BQ, Karliner JS (2006) Role of sphingosine kinase activity in protection of heart against ischemia reperfusion injury. Med Sci Monit 12:BR318–BR324

    PubMed  CAS  Google Scholar 

  6. Cui J, Engelman RM, Maulik N, Das DK (2004) Role of ceramide in ischemic preconditioning. J Am Coll Surg 198:770–777. doi:10.1016/j.jamcollsurg.2003.12.016

    Article  PubMed  Google Scholar 

  7. Cordis GA, Yoshida T, Das DK (1998) HPTLC analysis of sphingomyelin, ceramide and sphingosine in ischemic/reperfused rat heart. J Pharm Biomed Anal 16:1189–1193. doi:10.1016/S0731-7085(97)00260-4

    Article  PubMed  CAS  Google Scholar 

  8. Argaud L, Prigent A-F, Chalabreysse L, Loufouat J, Lagarde M, Ovize M (2004) Ceramide in the antiapoptotic effect of ischemic preconditioning. Am J Physiol Heart Circ Physiol 286:H246–H251. doi:10.1152/ajpheart.00638.2003

    Article  PubMed  CAS  Google Scholar 

  9. Zhang DX, Fryer RM, Hsu AK, Gross GJ, Campbell WB, Li P-L (2001) Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Res Cardiol 96:267–274. doi:10.1007/s00395-012-0266-4

    Article  PubMed  CAS  Google Scholar 

  10. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei D, Hannun YA, Umansky SR (1997) Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol 151:1257–1263

    PubMed  CAS  Google Scholar 

  11. Beręsewicz A, Dobrzyń A, Górski J (2002) Accumulation of specific ceramides in ischemic/reperfused rat heart: effect of ischemic preconditioning. J Physiol Pharmacol 53:371–382

    PubMed  Google Scholar 

  12. Lupiński SL, Schlicker E, Pędzińska-Betiuk A, Malinowska B (2011) Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT(3) receptor-mediated Bezold-Jarisch reflex in rats. Pharmacol Rep 63:1450–1459

    PubMed  Google Scholar 

  13. Błachnio-Zabielska AU, Persson XM, Koutsari C, Zabielski P, Jensen MD (2012) An LC/MS/MS method for measuring the in vivo incorporation of plasma free fatty acids into intramyocellular ceramides in humans. Rapid Commun Mass Spectrom 26:1134–1140. doi:10.1002/rcm.6216

    Article  PubMed  Google Scholar 

  14. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  PubMed  CAS  Google Scholar 

  15. Riboni L, Viani P, Bassi R, Prinetti A, Tettamanti G (1997) The role of sphingolipids in the process of signal transduction. Prog Lipid Res 36:153–195. doi:10.1016/S0163-7827(97)00008-8

    Article  PubMed  CAS  Google Scholar 

  16. Ito K, Anada Y, Tani M, Ikeda M, Sano T, Kihara A, Igarashi Y (2007) Lack of sphingosine 1-phosphate degrading enzymes in erythrocytes. Biochem Biophys Res Commun 357:212–217. doi:10.1016/j.bbrc.2007.03.123

    Article  PubMed  CAS  Google Scholar 

  17. Hänel P, Andréani P, Gräler MH (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 21:1202–1209. doi:10.1096/fj.06-7433com

    Article  PubMed  Google Scholar 

  18. Kim RH, Takabe K, Milstien S, Spiegel S (2009) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 179:692–696. doi:10.1016/j.bbalip.200902011

    Google Scholar 

  19. Yatomi Y, Ruan F, Hakomori S, Igarashi Y (1995) Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood 86:193–202

    PubMed  CAS  Google Scholar 

  20. Andréani P, Gräler MH (2006) Comparative quantification of sphingolipids and analogs in biological samples by high-performance liquid chromatography after chloroform extraction. Anal Biochem 358:239–246. doi:10.1016/j.ab.2006.08.027

    Article  PubMed  Google Scholar 

  21. Spiegel S, Milstein S (2002) Sphingosine-1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854. doi:10.1074/jbc.R200007200

    Article  PubMed  CAS  Google Scholar 

  22. Baranowski M, Zabielski P, Błachnio A, Górski J (2008) Effect of exercise duration on ceramide metabolism in the rat heart. Acta Physiol 192:519–529. doi:10.1111/j.1748-1716.2007.01755.x

    Article  CAS  Google Scholar 

  23. Dobrzyń A, Górski J (2002) Effect of acute exercise on the content of free sphinganine and sphingosine in different skeletal muscle types of the rat. Horm Metab Res 34:523–529. doi:10.1055/s-2002-34793

    Article  PubMed  Google Scholar 

  24. Cheng W, Kajstura J, Nitahara JA, Li B, Teiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316–327. doi:10.1006/excr.1996.0232

    Article  PubMed  CAS  Google Scholar 

  25. Simonis G, Wiedemann S, Schwarz K, Christ T, Sedding DG, Yu X, Marquetant R, Braun-Dullaeus RC, Ravens U, Strasser RH (2008) Chelerythine treatment influences the balance of pro and anti-apoptotic signaling pathways in the remote myocardium after infarction. Mol Cell Biochem 310:119–128. doi:10.1007/s11010-007-9672-6

    Article  PubMed  CAS  Google Scholar 

  26. Palojoki E, Saraste A, Ericsson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280:H2726–H2731

    PubMed  CAS  Google Scholar 

  27. Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A (2010) Control of metabolism and signaling of simple bioactive sphingolipids: implications in disease. Prog Lipid Res 49:316–334. doi:10.1016/j.plipres.2010.02.004

    Article  PubMed  CAS  Google Scholar 

  28. Huwiler A, Kotler T, Pfeilschifter J, Sandhoff K (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochem Biophys Acta 1485:63–69. doi:10.1016/S1388-1981(00)00042-1

    Article  PubMed  CAS  Google Scholar 

  29. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50:S91–S96. doi:10.1194/jlr.R800080-JLR200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by UMB grants 113-18664L, 114-18874L. We greatly appreciate Prof. Irena Kasacka for microscopic examination of the myocardium and Dr. Justyna Marciniak for determination of the ischemic area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Knapp.

About this article

Cite this article

Knapp, M., Żendzian-Piotrowska, M., Kurek, K. et al. Myocardial Infarction Changes Sphingolipid Metabolism in the Uninfarcted Ventricular Wall of the Rat. Lipids 47, 847–853 (2012). https://doi.org/10.1007/s11745-012-3694-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3694-x

Keywords

Navigation