Skip to main content
Log in

The Production of Conjugated α-Linolenic, γ-Linolenic and Stearidonic Acids by Strains of Bifidobacteria and Propionibacteria

  • Original Article
  • Published:
Lipids

Abstract

Conjugated fatty acids are regularly found in nature and have a history of biogenic activity in animals and humans. A number of these conjugated fatty acids are microbially produced and have been associated with potent anti-carcinogenic, anti-adipogenic, anti-atherosclerotic and anti-diabetogenic activities. Therefore, the identification of novel conjugated fatty acids is highly desirable. In this study, strains of bifidobacteria and propionibacteria previously shown by us and others to display linoleic acid isomerase activity were assessed for their ability to conjugate a range of other unsaturated fatty acids during fermentation. Only four, linoleic, α-linolenic, γ-linolenic and stearidonic acids, were converted to their respective conjugated isomers, conjugated linoleic acid (CLA), conjugated α-linolenic acid (CLNA), conjugated γ-linolenic acid (CGLA) and conjugated stearidonic acid (CSA), each of which contained a conjugated double bond at the 9,11 position. Of the strains assayed, Bifidobacterium breve DPC6330 proved the most effective conjugated fatty acid producer, bio-converting 70% of the linoleic acid to CLA, 90% of the α-linolenic acid to CLNA, 17% of the γ-linolenic acid to CGLA, and 28% of the stearidonic acid to CSA at a substrate concentration of 0.3 mg mL−1. In conclusion, strains of bifidobacteria and propionibacteria can bio-convert linoleic, α-linolenic, γ-linolenic and stearidonic acids to their conjugated isomers via the activity of the enzyme linoleic acid isomerase. These conjugated fatty acids may offer the combined health promoting properties of conjugated fatty acids such as CLA and CLNA, along with those of the unsaturated fatty acids from which they are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CGLA:

Conjugated γ-linolenic acid

CLA:

Conjugated linoleic acid

CLNA:

Conjugated α-linolenic acid

CSA:

Conjugated stearidonic acid

DAD:

Diode array detector

DMOX:

4,4-Dimethyloxazoline

EPA:

Eicosapentaenoic acid

FAME:

Fatty acid methyl esters

FID:

Flame ionization detector

MRS:

DeMan-Rogosa-Sharpe

GLC:

Gas liquid chromatography

GLC-MS:

Gas liquid chromatography mass spectrometry

GIT:

Gastrointestinal tract

MTAD:

4-Methyl-1,2,4-triazoline-3,5-dione

PUFA:

Polyunsaturated fatty acids

RP-HPLC:

Reverse phase high performance liquid chromatography

References

  1. Stanton C, Murphy J, McGrath E, Devery R (2003) Animal feeding strategies for conjugated linoleic acid enrichment of milk. In: Sebedio JL, Christie WW, Adlof R (eds) Advances in conjugated linoleic acid research, vol 2. AOCS Press, Champaign, pp 123–145

    Google Scholar 

  2. Dhiman TR, Nam SH, Ure AL (2005) Factors affecting conjugated linoleic acid content in milk and meat. Crit Rev Food Sci Nutr 45(6):463–482

    Article  PubMed  CAS  Google Scholar 

  3. Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, Tanaka T, Miyashita K (2005) Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids 73(2):113–119

    Article  PubMed  CAS  Google Scholar 

  4. Liu L, Hammond EG, Nikolau BJ (1997) In vivo studies of the biosynthesis of [alpha]-eleostearic acid in the seed of Momordica charantia L. Plant Physiol 113(4):1343–1349

    PubMed  CAS  Google Scholar 

  5. Kohno H, Yasui Y, Suzuki R, Hosokawa M, Miyashita K, Tanaka T (2004) Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARgamma expression and alteration of lipid composition. Int J Cancer 110(6):896–901

    Article  PubMed  CAS  Google Scholar 

  6. Chisholm MJ, Hopkins CY (1967) Conjugated fatty acids in some Cucurbitaceae seed oils. Can J Biochem 45(7):1081–1086

    Article  PubMed  CAS  Google Scholar 

  7. Wise ML, Hamberg M, Gerwick WH (1994) Biosynthesis of conjugated triene-containing fatty acids by a novel isomerase from the red marine alga Ptilota filicina. Biochemistry 33(51):15223–15232

    Article  PubMed  CAS  Google Scholar 

  8. Lopez A, Gerwick WH (1987) Two new icosapentaenoic acids from the temperate red seaweed Ptilota filicina J Agardh. Lipids 22(3):190–194

    Article  PubMed  CAS  Google Scholar 

  9. Burgess JR, de la Rossa RI, Jacobs RS, Butler A (1991) A new eicosapentaenoic acid formed from arachidonic acid in coralline red algae Bossiella orbigniana. Lipids 26:162–165

    Article  CAS  Google Scholar 

  10. Mikhailova MV, Bemis DL, Wise ML, Gerwick WH, Norris JN, Jacobs RS (1995) Structure and biosynthesis of novel conjugated polyene fatty acids from the marine green alga Anadyomene stellata. Lipids 30(7):583–589

    Article  PubMed  CAS  Google Scholar 

  11. Yonezawa Y, Hada T, Uryu K, Tsuzuki T, Eitsuka T, Miyazawa T, Murakami-Nakai C, Yoshida H, Mizushina Y (2005) Inhibitory effect of conjugated eicosapentaenoic acid on mammalian DNA polymerase and topoisomerase activities and human cancer cell proliferation. Biochem Pharmacol 70(3):453–460

    Article  PubMed  CAS  Google Scholar 

  12. Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW (2005) Biological activities of conjugated fatty acids: conjugated eicosadienoic (conj. 20:2delta(c11,t13/t12,c14)), eicosatrienoic (conj. 20:3delta(c8,t12,c14)), and heneicosadienoic (conj. 21:2delta(c12,t14/c13,t15)) acids and other metabolites of conjugated linoleic acid. Biochim Biophys Acta 1687(1–3):120–129

    PubMed  CAS  Google Scholar 

  13. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17(12):789–810

    Article  PubMed  CAS  Google Scholar 

  14. Wahle KW, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43(6):553–587

    Article  PubMed  CAS  Google Scholar 

  15. Igarashi M, Miyazawa T (2000) Newly recognized cytotoxic effect of conjugated trienoic fatty acids on cultured human tumor cells. Cancer Lett 148(2):173–179

    Article  PubMed  CAS  Google Scholar 

  16. Coakley M, Banni S, Johnson MC, Mills S, Devery R, Fitzgerald G, Ross RP, Stanton C (2009) Inhibitory effect of conjugated α-linolenic acid (CALA) from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids 44(3):249–256

    Article  PubMed  CAS  Google Scholar 

  17. Hennessy AA, Devery R, Ross RP, Stanton C (2011) The health promoting properties of the conjugated isomers of α-linolenic acid (CALA). Lipids 46(2):105–119

    Article  PubMed  CAS  Google Scholar 

  18. Destaillats F, Trottier JP, Galvez JM, Angers P (2005) Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci 88(9):3231–3239

    Article  PubMed  CAS  Google Scholar 

  19. Tsuzuki T, Tanaka K, Kuwahara S, Miyazawa T (2005) Synthesis of the conjugated trienes 5E,7 E,9E,14Z,17Z-eicosapentaenoic acid and 5Z,7E,9E,14Z,17Z-eicosapentaenoic acid, and their induction of apoptosis in DLD-1 colorectal adenocarcinoma cells. Lipids 40(2):147–154

    Article  PubMed  CAS  Google Scholar 

  20. Tsujita-Kyutoku M, Yuri T, Danbara N, Senzaki H, Kiyozuka Y, Uehara N, Takada H, Hada T, Miyazawa T, Ogawa Y, Tsubura A (2004) Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action. Breast Cancer Res 6(4):R291–R299

    Article  PubMed  CAS  Google Scholar 

  21. Tsuzuki T, Kawakami Y, Nakagawa K, Miyazawa T (2005) Conjugated docosahexaenoic acid inhibits lipid accumulation in rats. J Nutr Biochem 17(8):518–524

    Article  PubMed  Google Scholar 

  22. Danbara N, Yuri T, Tsujita-Kyutoku M, Sato M, Senzaki H, Takada H, Hada T, Miyazawa T, Okazaki K, Tsubura A (2004) Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells. Nutr Cancer 50(1):71–79

    Article  PubMed  CAS  Google Scholar 

  23. Coakley M, Johnson MC, McGrath E, Rahman S, Ross RP, Fitzgerald GF, Devery R, Stanton C (2006) Intestinal bifidobacteria that produce trans-9,trans-11 conjugated linoleic acid: a fatty acid with antiproliferative activity against human colon SW480 and HT-29 cancer cells. Nutr Cancer 56(1):95–102

    Article  PubMed  CAS  Google Scholar 

  24. Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100(4):355–364

    Article  PubMed  CAS  Google Scholar 

  25. Sieber R, Collomb M, Aeschlimann A, Jelen P, Eyer H (2004) Impact of microbial cultures on conjugated linoleic acid in dairy products—a review. Int Dairy J 14(1):1–15

    Article  CAS  Google Scholar 

  26. Hennessy AA, Ross RP, Stanton C, Devery R (2007) Development of dairy based functional foods enriched in conjugated linoleic acid with special reference to rumenic acid. In: Saarela M (ed) Functional dairy products. Woodhead Publishing Limited, Cambridge, pp 443–495

    Chapter  Google Scholar 

  27. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94(1):138–145

    Article  PubMed  CAS  Google Scholar 

  28. Jiang J, Bjorck L, Fonden R (1998) Production of conjugated linoleic acid by dairy starter cultures. J Appl Microbiol 85(1):95–102

    Article  PubMed  CAS  Google Scholar 

  29. Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73(7):2333–2337

    Article  PubMed  CAS  Google Scholar 

  30. Kishino S, Ogawa J, Ando A, Yokozeki K, Shimizu S (2009) Microbial production of conjugated gamma-linolenic acid from gamma-linolenic acid by Lactobacillus plantarum AKU 1009a. J Appl Microbiol 108(6):2012–2018

    PubMed  Google Scholar 

  31. Ewaschuk JB, Walker JW, Diaz H, Madsen KL (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136(6):1483–1487

    PubMed  CAS  Google Scholar 

  32. Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C (2009) The metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89(5):1393–1401

    Article  PubMed  CAS  Google Scholar 

  33. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86

    Article  PubMed  CAS  Google Scholar 

  34. Christie WW, Han X (2010) Lipid analysis—isolation, separation, identification and lipidomic analysis, 4th edn. Oily Press, Bridgwater

    Google Scholar 

  35. Winkler K, Steinhart H (2001) Identification of conjugated isomers of linolenic acid and arachidonic acid in cheese. J Sep Sci 24(8):663–668

    Article  CAS  Google Scholar 

  36. Dobson G (1998) Identification of conjugated fatty acids by gas chromatography mass spectrometry of 4-methyl-1,2,4-triazoline-3,5-dione adducts. J Am Oil Chem Soc 75:137–142

    Article  CAS  Google Scholar 

  37. Andersson BA, Holman RT (1974) Pyrrolidides for mass spectrometric determination of the position of double bonds in monounsaturated fatty acids. Lipids 9:185–190

    Article  PubMed  CAS  Google Scholar 

  38. Kishino S, Ogawa J, Ando A, Shimizu S (2003) Conjugated alpha-linolenic acid production from alpha-linolenic acid by Lactobacillus plantarum AKU 1009a. Eur J Lipid Sci 105(10):572–577

    Article  CAS  Google Scholar 

  39. Kepler CR, Tucker WP, Tove SB (1970) Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate delta-12-cis, delta-11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 245(14):3612–3620

    PubMed  CAS  Google Scholar 

  40. Raychowdhury MK, Goswami R, Chakrabarti P (1985) Effect of unsaturated fatty acids in growth inhibition of some penicillin-resistant and sensitive bacteria. J Appl Bacteriol 59(2):183–188

    Article  PubMed  CAS  Google Scholar 

  41. Maia MR, Chaudhary LC, Figueres L, Wallace RJ (2006) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91(4):303–314

    Article  PubMed  Google Scholar 

  42. Knapp HR, Melly MA (1986) Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 154(1):84–94

    Article  PubMed  CAS  Google Scholar 

  43. Greenway DL, Dyke KG (1979) Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol 115(1):233–245

    PubMed  CAS  Google Scholar 

  44. Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh MJ (2009) The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 4(2):e4344

    Article  PubMed  Google Scholar 

  45. Kanehisa M, Goto S, GG KE (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed  CAS  Google Scholar 

  46. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–D357

    Article  PubMed  CAS  Google Scholar 

  47. Devillard E, McIntosh FM, Duncan SH, Wallace RJ (2007) Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189(6):2566–2570

    Article  PubMed  CAS  Google Scholar 

  48. Xu S, Boylston TD, Glatz BA (2004) Effect of lipid source on probiotic bacteria and conjugated linoleic acid formation in milk model systems. J Am Oil Chem Soc 81:589–595

    Article  CAS  Google Scholar 

  49. Xu S, Boylston TD, Glatz BA (2005) Conjugated linoleic acid content and organoleptic attributes of fermented milk products produced with probiotic bacteria. J Agric Food Chem 53(23):9064–9072

    Article  PubMed  CAS  Google Scholar 

  50. Florence ACR, da Silva RC, Espírito Santo AP, Gioielli LA, Tamime AY, Oliveira MN (2009) Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures. Dairy Sci Technol 89:541–553

    Article  CAS  Google Scholar 

  51. Fan YY, Chapkin RS (1998) Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr 128(9):1411–1414

    PubMed  CAS  Google Scholar 

  52. Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr 139(1):5–10

    PubMed  CAS  Google Scholar 

  53. Li D, Bode O, Drummond H, Sinclair AJ (2003) Omega-3 (n-3) fatty acids. In: Gunstone FD (ed) Lipids for functional foods and nutraceuticals. The Oily Press, Bridgewater, pp 225–262

    Google Scholar 

Download references

Acknowledgments

We would like to thank Seamus Aherne and Lina Cordeddu for their technical assistance. The assistance with GLC-MS by Mylnefield Lipid Analysis is gratefully acknowledged. A. A. Hennessy is in receipt of a Teagasc Walsh Fellowship. This research was funded by EU project QLK1-2001-02362 and by Alimentary Pharmabiotic Centre (APC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Stanton.

About this article

Cite this article

Hennessy, A.A., Barrett, E., Paul Ross, R. et al. The Production of Conjugated α-Linolenic, γ-Linolenic and Stearidonic Acids by Strains of Bifidobacteria and Propionibacteria. Lipids 47, 313–327 (2012). https://doi.org/10.1007/s11745-011-3636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3636-z

Keywords

Navigation