Skip to main content

Advertisement

Log in

The Front-end Desaturase: Structure, Function, Evolution and Biotechnological Use

  • Review
  • Published:
Lipids

Abstract

Very long chain polyunsaturated fatty acids such as arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are essential components of cell membranes, and are precursors for a group of hormone-like bioactive compounds (eicosanoids and docosanoids) involved in regulation of various physiological activities in animals and humans. The biosynthesis of these fatty acids involves an alternating process of fatty acid desaturation and elongation. The desaturation is catalyzed by a unique class of oxygenases called front-end desaturases that introduce double bonds between the pre-existing double bond and the carboxyl end of polyunsaturated fatty acids. The first gene encoding a front-end desaturase was cloned in 1993 from cyanobacteria. Since then, front-end desaturases have been identified and characterized from a wide range of eukaryotic species including algae, protozoa, fungi, plants and animals including humans. Unlike front-end desaturases from bacteria, those from eukaryotes are structurally characterized by the presence of an N-terminal cytochrome b 5-like domain fused to the main desaturation domain. Understanding the structure, function and evolution of front-end desaturases, as well as their roles in the biosynthesis of very long chain polyunsaturated fatty acids offers the opportunity to engineer production of these fatty acids in transgenic oilseed plants for nutraceutical markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  PubMed  CAS  Google Scholar 

  2. Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15

    PubMed  CAS  Google Scholar 

  3. Buist PH (2004) Fatty acid desaturases: selecting the dehydrogenation channel. Nat Prod Rep 21:249–262

    Article  PubMed  CAS  Google Scholar 

  4. Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B, Stecca KL (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  PubMed  CAS  Google Scholar 

  5. Hitz WD, Carlson TJ, Booth JR Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641

    Article  PubMed  CAS  Google Scholar 

  6. Reed DW, Schafer UA, Covello PS (2000) Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol 122:715–720

    Article  PubMed  CAS  Google Scholar 

  7. Meesapyodsuk D, Reed DW, Covello PS, Qiu X (2007) Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. J Biol Chem 282:20191–20199

    Article  PubMed  CAS  Google Scholar 

  8. Fox BG, Shanklin J, Somerville C, Munck E (1993) Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diiron-oxo protein. Proc Natl Acad Sci USA 90:2486–2490

    Article  PubMed  CAS  Google Scholar 

  9. Fox BG, Shanklin J, Ai J, Loehr TM, Sanders-Loehr J (1994) Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins. Biochemistry 33:12776–12786

    Article  PubMed  CAS  Google Scholar 

  10. Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci USA 94:1142–1147

    Article  PubMed  CAS  Google Scholar 

  11. Meesapyodsuk D, Reed DW, Savile CK, Buist PH, Ambrose SJ, Covello PS (2000) Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry 39:11948–11954

    Article  PubMed  CAS  Google Scholar 

  12. Qiu X, Hong H, MacKenzie SL (2001) Identification of a Delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem 276:31561–31566

    Article  PubMed  CAS  Google Scholar 

  13. Aitzetmuller K, Tsevegsuren N (1994) Seed fatty acid “front-end” desaturases and chemotaxonomy-a case study in the Ranunculaceae. J Plant Physiol 143:538–543

    Article  Google Scholar 

  14. Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376

    Article  PubMed  CAS  Google Scholar 

  15. Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b 5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA 94:4211–4216

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Maroto F, Garrido-Cardenas JA, Rodriguez-Ruiz J, Vilches-Ferron M, Adam AC, Polaina J, Alonso DL (2002) Cloning and molecular characterization of the delta6-desaturase from two echium plant species: production of GLA by heterologous expression in yeast and tobacco. Lipids 37:417–426

    Article  PubMed  CAS  Google Scholar 

  17. Piispanen R, Saranpaa P (2002) Neutral lipids and phospholipids in Scots pine (Pinus sylvestris) sapwood and heartwood. Tree Physiol 22:661–666

    Article  PubMed  CAS  Google Scholar 

  18. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids 68:97–106

    Article  PubMed  CAS  Google Scholar 

  19. Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP (1995) Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 36:2471–2477

    PubMed  CAS  Google Scholar 

  20. Wallis JG, Browse J (1999) The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys 365:307–316

    Article  PubMed  CAS  Google Scholar 

  21. Sayanova O, Haslam R, Qi B, Lazarus CM, Napier JA (2006) The alternative pathway C20 Delta8-desaturase from the non-photosynthetic organism Acanthamoeba castellanii is an atypical cytochrome b 5-fusion desaturase. FEBS Lett 580:1946–1952

    Article  PubMed  CAS  Google Scholar 

  22. Venegas-Caleron M, Beaudoin F, Sayanova O, Napier JA (2007) Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase. J Biol Chem 282:2996–3003

    Article  PubMed  CAS  Google Scholar 

  23. Reddy AS, Nuccio ML, Gross LM, Thomas TL (1993) Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol Biol 22:293–300

    Article  PubMed  CAS  Google Scholar 

  24. Deshnium P, Paithoonrangsarid K, Suphatrakul A, Meesapyodsuk D, Tanticharoen M, Cheevadhanarak S (2000) Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiol Lett 184:207–213

    Article  PubMed  CAS  Google Scholar 

  25. Thomas TL, Reddy AS, Nuccio M, Nunberg AN, Freyssinet GL (1997) Production of gamma-linolenic acid by a delta6-desaturase. U.S. Patent 4,736,866

  26. Domergue F, Abbadi A, Zahringer U, Moreau H, Heinz E (2005) In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  PubMed  CAS  Google Scholar 

  27. Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of omega3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  PubMed  CAS  Google Scholar 

  28. Domergue F, Lerchl J, Zahringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  PubMed  CAS  Google Scholar 

  29. Girke T, Schmidt H, Zahringer U, Reski R, Heinz E (1998) Identification of a novel delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15:39–48

    Article  PubMed  CAS  Google Scholar 

  30. Laoteng K, Mannontarat R, Tanticharoen M, Cheevadhanarak S (2000) Delta6-desaturase of Mucor rouxii with high similarity to plant delta 6-desaturase and its heterologous expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 279:17–22

    Article  PubMed  CAS  Google Scholar 

  31. Sakuradani E, Kobayashi M, Shimizu S (1999) Delta6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238:445–453

    Article  PubMed  CAS  Google Scholar 

  32. Hong H, Datla N, Reed DW, Covello PS, MacKenzie SL, Qiu X (2002) High-level production of gamma-linolenic acid in Brassica juncea using a delta6 desaturase from Pythium irregulare. Plant Physiol 129:354–362

    Article  PubMed  CAS  Google Scholar 

  33. Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ (2005) Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterization of a delta6 desaturase of Atlantic salmon. Lipids 40:13–24

    Article  PubMed  Google Scholar 

  34. Seiliez I, Panserat S, Kaushik S, Bergot P (2001) Cloning, tissue distribution and nutritional regulation of a Delta6-desaturase-like enzyme in rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 130:83–93

    Article  PubMed  CAS  Google Scholar 

  35. Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 274:471–477

    Article  PubMed  CAS  Google Scholar 

  36. Sperling P, Zahringer U, Heinz E (1998) A sphingolipid desaturase from higher plants. Identification of a new cytochrome b 5 fusion protein. J Biol Chem 273:28590–28596

    Article  PubMed  CAS  Google Scholar 

  37. Sayanova O, Beaudoin F, Libisch B, Castel A, Shewry PR, Napier JA (2001) Mutagenesis and heterologous expression in yeast of a plant Delta6-fatty acid desaturase. J Exp Bot 52:1581–1585

    Article  PubMed  CAS  Google Scholar 

  38. Sayanova OV, Beaudoin F, Michaelson LV, Shewry PR, Napier JA (2003) Identification of primula fatty acid delta 6-desaturases with n-3 substrate preferences. FEBS Lett 542:100–104

    Article  PubMed  CAS  Google Scholar 

  39. Sperling P, Lee M, Girke T, Zahringer U, Stymne S, Heinz E (2000) A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b 5 superfamily. Eur J Biochem 267:3801–3811

    Article  PubMed  CAS  Google Scholar 

  40. de Antueno RJ, Knickle LC, Smith H, Elliot ML, Allen SJ, Nwaka S, Winther MD (2001) Activity of human Delta5 and Delta6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett 509:77–80

    Article  PubMed  Google Scholar 

  41. Reddy AS, Thomas TL (1996) Expression of a cyanobacterial delta 6-desaturase gene results in gamma-linolenic acid production in transgenic plants. Nat Biotechnol 14:639–642

    Article  PubMed  CAS  Google Scholar 

  42. Truksa M, Vrinten P, Qiu X (2008) Metabolic engineering of plants for polyunsaturated fatty acid production. Mol Breed 23:1–11

    Article  Google Scholar 

  43. Liu JW, Huang YS, DeMichele S, Bergana M, EJr Bobik, Hastilow C, Chuang LT, Mukerji P, Knutzon D (2001) Evaluation of the seed oils from a canola plant genetically transformed to produce high levels of gamma-linolenic acid. In: Huang YS, Ziboh VA (eds) Gamma-linolenic acid: recent advances in biotechnology and clinical applications. AOCS Press, Champaign, IL, pp 61–71

    Google Scholar 

  44. Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J Nutr 133:4271–4274

    PubMed  CAS  Google Scholar 

  45. Eckert H, La VB, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T (2006) Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224:1050–1057

    Article  PubMed  CAS  Google Scholar 

  46. Knauf VC, Shewmaker C, Flider F, Emlay D, Rey E (2011) Safflower with elevated gamma-linolenic acid. U.S. Patent 7,893,321B2

  47. Knutzon DS, Thurmond JM, Huang YS, Chaudhary S, Bobik EG Jr, Chan GM, Kirchner SJ, Mukerji P (1998) Identification of Delta5-desaturase from Mortierella alpina by heterologous expression in bakers’ yeast and canola. J Biol Chem 273:29360–29366

    Article  PubMed  CAS  Google Scholar 

  48. Michaelson LV, Lazarus CM, Griffiths G, Napier JA, Stobart AK (1998) Isolation of a Delta5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem 273:19055–19059

    Article  PubMed  CAS  Google Scholar 

  49. Kajikawa M, Matsui K, Ochiai M, Tanaka Y, Kita Y, Ishimoto M, Kohzu Y, Shoji S, Yamato KT, Ohyama K, Fukuzawa H, Kohchi T (2008) Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Delta6-desaturase, Delta6-elongase, and Delta5-desaturase genes. Biosci Biotechnol Biochem 72:435–444

    Article  PubMed  CAS  Google Scholar 

  50. Kajikawa M, Yamato KT, Kohzu Y, Nojiri M, Sakuradani E, Shimizu S, Sakai Y, Fukuzawa H, Ohyama K (2004) Isolation and characterization of delta(6)-desaturase, an ELO-like enzyme and delta(5)-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Plant Mol Biol 54:335–352

    Article  PubMed  CAS  Google Scholar 

  51. Saito T, Ochiai H (1999) Identification of Delta5-fatty acid desaturase from the cellular slime mold Dictyostelium discoideum. Eur J Biochem 265:809–814

    Article  PubMed  CAS  Google Scholar 

  52. Cho HP, Nakamura M, Clarke SD (1999) Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274:37335–37339

    Article  PubMed  CAS  Google Scholar 

  53. Hong H, Datla N, MacKenzie SL, Qiu X (2002) Isolation and characterization of a delta5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops. Lipids 37:863–868

    Article  PubMed  CAS  Google Scholar 

  54. Kaewsuwan S, Cahoon EB, Perroud PF, Wiwat C, Panvisavas N, Quatrano RS, Cove DJ, Bunyapraphatsara N (2006) Identification and functional characterization of the moss Physcomitrella patens delta5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J Biol Chem 281:21988–21997

    Article  PubMed  CAS  Google Scholar 

  55. Tavares S, Grotkjaer T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel {Delta}5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol 77:1854–1861

    Article  PubMed  CAS  Google Scholar 

  56. Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA (2005) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412

    Article  PubMed  CAS  Google Scholar 

  57. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. Proc Natl Acad Sci USA 98:14304–14309

    Article  PubMed  CAS  Google Scholar 

  58. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  59. Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2010) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 19:221–229

    Article  PubMed  CAS  Google Scholar 

  60. Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase J Biol Chem 266:19995–20000

    PubMed  CAS  Google Scholar 

  61. Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E (2003) Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Delta4-fatty acyl group desaturase. Biochemistry 42:9779–9788

    Article  PubMed  CAS  Google Scholar 

  62. Tripodi KE, Buttigliero LV, Altabe SG, Uttaro AD (2006) Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J 273:271–280

    Article  PubMed  CAS  Google Scholar 

  63. Tonon T, Harvey D, Larson TR, Graham IA (2003) Identification of a very long chain polyunsaturated fatty acid Delta4-desaturase from the microalga Pavlova lutheri. FEBS Lett 553:440–444

    Article  PubMed  CAS  Google Scholar 

  64. Zhou XR, Robert SS, Petrie JR, Frampton DM, Mansour MP, Blackburn SI, Nichols PD, Green AG, Singh SP (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 68:785–796

    Article  PubMed  CAS  Google Scholar 

  65. Li Y, Monroig O, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Delta4 activity. Proc Natl Acad Sci USA 107:16840–16845

    Article  PubMed  CAS  Google Scholar 

  66. Kinney AJ, Cahoon EB, Damude HG, Hitz WD, Kolar CW, Liu ZB (2004) Production of very long chain polyunsaturated fatty acids in oilseed plants. WO 2004/071467

  67. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  68. Robert SS, Singh SP, Zhou X, Petrie JR, Blackburn SI, Mansour PM, Nichols PD, Liu Q, Green AG (2005) Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol 32:473–479

    Article  CAS  Google Scholar 

  69. Qi B, Fraser TC, Bleakley CL, Shaw EM, Stobart AK, Lazarus CM (2003) The variant ‘his-box’ of the C18-Delta9-PUFA-specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity. FEBS Lett 547:137–139

    Article  PubMed  CAS  Google Scholar 

  70. Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT (2009) An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n–6 and 20:3n–3. J Lipid Res 50:1195–1202

    Article  PubMed  CAS  Google Scholar 

  71. Sayanova O, Haslam RP, Caleron MV, Lopez NR, Worthy C, Rooks P, Allen MJ, Napier JA (2011) Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry 72:594–600

    Article  PubMed  CAS  Google Scholar 

  72. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  PubMed  CAS  Google Scholar 

  73. Petrie JR, Shrestha P, Belide S, Mansour MP, Liu Q, Horne J, Nichols PD, Singh SP (2011) Transgenic production of arachidonic acid in oilseeds. Transgenic Res. doi:10.1007/s11248-011-9517-7

  74. Shanklin J, Somerville C (1991) Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88:2510–2514

    Article  PubMed  CAS  Google Scholar 

  75. Stymne S, Stobart AK (1986) Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis). Biochem J 240:385–393

    PubMed  CAS  Google Scholar 

  76. Griffiths G, Stobart AK, Stymne S (1988) Delta 6- and delta 12-desaturase activities and phosphatidic acid formation in microsomal preparations from the developing cotyledons of common borage (Borago officinalis). Biochem J 252:641–647

    PubMed  CAS  Google Scholar 

  77. Domergue F, Abbadi A, Ott C, Zank TK, Zahringer U, Heinz E (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem 278:35115–35126

    Article  PubMed  CAS  Google Scholar 

  78. Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2010) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA Delta6-desaturase with omega3-preference from the marine microalga Micromonas pusilla. Metab Eng 12:233–240

    Article  PubMed  CAS  Google Scholar 

  79. Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68:73–95

    Article  PubMed  CAS  Google Scholar 

  80. Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544

    PubMed  CAS  Google Scholar 

  81. Mitchell AG, Martin CE (1995) A novel cytochrome b 5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J Biol Chem 270:29766–29772

    Article  PubMed  CAS  Google Scholar 

  82. Qiu X, Hong H, Datla N, MacKenzie SL, Taylor DC, Thomas TL (2002) Expression of borage delta-6 desaturase in Saccharomyces cerevisiae and oilseed crops. Can J Bot 80:42–49

    Article  CAS  Google Scholar 

  83. Hongsthong A, Subudhi S, Sirijuntarut M, Kurdrid P, Cheevadhanarak S, Tanticharoen M (2006) Revealing the complementation of ferredoxin by cytochrome b (5) in the Spirulina-(6)-desaturation reaction by N-terminal fusion and co-expression of the fungal-cytochrome b (5) domain and Spirulina-(6)-acyl-lipid desaturase. Appl Microbiol Biotechnol 72:1192–1201

    Article  PubMed  CAS  Google Scholar 

  84. Sayanova O, Shewry PR, Napier JA (1999) Histidine-41 of the cytochrome b 5 domain of the borage delta6 fatty acid desaturase is essential for enzyme activity. Plant Physiol 121:641–646

    Article  PubMed  CAS  Google Scholar 

  85. Na-Ranong S, Laoteng K, Kittakoop P, Tanticharoen M, Cheevadhanarak S (2006) Targeted mutagenesis of a fatty acid Delta6-desaturase from Mucor rouxii: role of amino acid residues adjacent to histidine-rich motif II. Biochem Biophys Res Commun 339:1029–1034

    Article  PubMed  CAS  Google Scholar 

  86. Libisch B, Michaelson LV, Lewis MJ, Shewry PR, Napier JA (2000) Chimeras of Delta6-fatty acid and Delta8-sphingolipid desaturases. Biochem Biophys Res Commun 279:779–785

    Article  PubMed  CAS  Google Scholar 

  87. Lange SJ, Que L Jr (1998) Oxygen activating nonheme iron enzymes. Curr Opin Chem Biol 2:159–172

    Article  PubMed  CAS  Google Scholar 

  88. Shanklin J, Guy JE, Mishra G, Lindqvist Y (2009) Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J Biol Chem 284:18559–18563

    Article  PubMed  CAS  Google Scholar 

  89. Whyte LG, Schultz A, Beilen JB, Luz AP, Pellizari V, Labbe D, Greer CW (2002) Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150

    PubMed  CAS  Google Scholar 

  90. Feussner I, Wasternack C, Kindl H, Kuhn H (1995) Lipoxygenase-catalyzed oxygenation of storage lipids is implicated in lipid mobilization during germination. Proc Natl Acad Sci USA 92:11849–11853

    Article  PubMed  CAS  Google Scholar 

  91. Arciero DM, Orville AM, Lipscomb JD (1985) [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases. J Biol Chem 260:14035–14044

    PubMed  CAS  Google Scholar 

  92. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  PubMed  CAS  Google Scholar 

  93. Fauconnot L, Buist PH (2001) Gamma-linolenic acid biosynthesis: cryptoregiochemistry of delta6 desaturation. J Org Chem 66:1210–1215

    Article  PubMed  CAS  Google Scholar 

  94. Behrouzian B, Buist PH (2003) Mechanism of fatty acid desaturation: a bioorganic perspective. Prostaglandins Leukot Essent Fatty Acids 68:107–112

    Article  PubMed  CAS  Google Scholar 

  95. Meesapyodsuk D, Reed DW, Savile CK, Buist PH, Schafer UA, Ambrose SJ, Covello PS (2000) Substrate specificity, regioselectivity and cryptoregiochemistry of plant and animal omega-3 fatty acid desaturases. Biochem Soc Trans 28:632–635

    Article  PubMed  CAS  Google Scholar 

  96. Aguilar PS, de MD (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514

    Article  PubMed  CAS  Google Scholar 

  97. Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295–319

    Article  PubMed  CAS  Google Scholar 

  98. Sayanova O, Napier JA (2011) Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot Essent Fatty Acids 85:253–260

    Google Scholar 

  99. Singh SP, Zhou XR, Liu Q, Stymne S, Green AG (2005) Metabolic engineering of new fatty acids in plants. Curr Opin Plant Biol 8:197–203

    Article  PubMed  CAS  Google Scholar 

  100. Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:330–337

    Article  PubMed  CAS  Google Scholar 

  101. Graham IA, Larson T, Napier JA (2007) Rational metabolic engineering of transgenic plants for biosynthesis of omega-3 polyunsaturates. Curr Opin Biotechnol 18:142–147

    Article  PubMed  CAS  Google Scholar 

  102. Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Mark Smith and Patrick Covello for their critical reading of this manuscript. We also wish to thank the authors for their wonderful works referred here. As there are a large number of publications in this field, we apologize to those authors whose works are relevant but might have been overlooked and thus not included in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Qiu.

About this article

Cite this article

Meesapyodsuk, D., Qiu, X. The Front-end Desaturase: Structure, Function, Evolution and Biotechnological Use. Lipids 47, 227–237 (2012). https://doi.org/10.1007/s11745-011-3617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3617-2

Keywords

Navigation